Nano Research

, Volume 3, Issue 10, pp 685–693 | Cite as

Efficient synthesis of PbTe nanoparticle networks

Open Access
Research Article

Abstract

The synthesis of semiconductor nanocrystalline networks using weak capping ligands in aqueous media has been demonstrated. Carbohydrates, including ?-cyclodextrin, D-(+)-glucose, D-glucosamine, lactobionic acid, sucrose, and starch were chosen as weak ligands to facilitate the formation of PbTe nanoparticle networks. The nanoparticle size, ranging from 5 nm to 30 nm, can be tuned by manipulating the temperature and concentration. Through a similar strategy, more complicated nanostructures including carbohydrate spheres@PbTe core-shell structures and Te@carbohydrate@PbTe multilayered submicron cables have been fabricated. This is a general approach which can be easily extended to the fabrication of other semiconductor networks, including PbSe and Bi2Te3 using carbohydrates and ethylenediaminetetraacetic acid (EDTA), respectively, as ligands.

Keywords

Lead telluride nanoparticle network core shell structures thermoelectric carbohydrate 

Supplementary material

12274_2010_30_MOESM1_ESM.pdf (1.3 mb)
Supplementary material, approximately 340 KB.

References

  1. [1]
    Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.CrossRefADSGoogle Scholar
  2. [2]
    Peng, X. G. An essay on synthetic chemistry of colloidal nanocrystals. Nano Res. 2009, 2, 425–447.CrossRefGoogle Scholar
  3. [3]
    Jun, Y. W.; Choi, J. S.; Cheon, J. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem. Int. Ed. 2006, 45, 3414–3439.CrossRefGoogle Scholar
  4. [4]
    Par, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 4630–4660.CrossRefGoogle Scholar
  5. [5]
    Burda, C.; Chen, X. B.; Naryanna, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102.CrossRefPubMedGoogle Scholar
  6. [6]
    Korgel, B. A.; Fitzmaurice, D. Self-assembly of silver nanocrystals into two-dimensional nanowire arrays. Adv. Mater. 1998, 10, 661–665.CrossRefGoogle Scholar
  7. [7]
    Pacholski, C.; Kornowski, A.; Weller, H. Self-assembly of ZnO: From nanodots to nanorods. Angew. Chem. Int. Ed. 2002, 41, 1188–1191.CrossRefGoogle Scholar
  8. [8]
    Yu, J. H.; Joo, J.; Park, H. M.; Baik, S.; Kim, Y. W.; Kim, S. C.; Hyeon, T. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. J. Am. Chem. Soc. 2005, 127, 5662–5670.CrossRefPubMedGoogle Scholar
  9. [9]
    Cho, K. S.; Talapin, D. V.; Gaschler, W.; Murray, C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 2005, 127, 7140–7147.CrossRefPubMedGoogle Scholar
  10. [10]
    Tai, G. A.; Guo, W. L.; Zhang, Z. H. Hydrothermal synthesis and thermoelectric transport properties of uniform singlecrystalline pearl-necklace-shaped PbTe nanowires. Cryst. Growth Des. 2008, 8, 2906–2911.CrossRefGoogle Scholar
  11. [11]
    Tang, Z. Y.; Kotov, N. A.; Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 2002, 297, 237–240.CrossRefADSPubMedGoogle Scholar
  12. [12]
    Kim, F.; Kwan, S.; Akana, J.; Yang, P. Langmuir-Blodgett nanorod assembly. J. Am. Chem. Soc. 2001, 123, 4360–4361.CrossRefPubMedGoogle Scholar
  13. [13]
    Xu, X. X.; Wang, X.; Nisar, A.; Liang, X.; Zhuang, J.; Hu, S.; Zhuang, Y. Combinatorial hierarchically ordered 2D architectures self-assembled from nanocrystal building blocks. Adv. Mater. 2008, 20, 3702–3708.CrossRefGoogle Scholar
  14. [14]
    Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Self-organization of CdSe nanocrystallites into 3-dimensional quantum-dot superlattices. Science 1995, 270, 1335–1338.CrossRefADSGoogle Scholar
  15. [15]
    Nykypanchuk, D.; Maye, M. M.; van der Lelie, D.; Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 2008, 451, 549–552.CrossRefADSPubMedGoogle Scholar
  16. [16]
    Park, S. Y.; Lytton-Jean, A. K. R.; Lee, B.; Weigand, S.; Schatz, G. C.; Mirkin, C. A. DNA-programmable nanoparticle crystallization. Nature 2008, 451, 553–556.CrossRefADSPubMedGoogle Scholar
  17. [17]
    Ahniyaz, A.; Sakamoto, Y.; Bergstro, L. Magnetic field-induced assembly of oriented superlattice from maghemite nanocubes. Proc. Nat. Acad. Sci. USA 2007, 104, 17570–17574.CrossRefADSPubMedGoogle Scholar
  18. [18]
    Redl, F. X.; Cho, K. S.; Murray, C. B.; O’Brien, S. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 2003, 423, 968–971.CrossRefADSPubMedGoogle Scholar
  19. [19]
    Shevchenko, E. V.; Talapin, D. V.; Murray, C. B.; O’Brien, S. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J. Am. Chem. Soc. 2006, 128, 3620–3637.CrossRefPubMedGoogle Scholar
  20. [20]
    Zhang, Y. X.; Zeng, H. C. Gold sponges prepared via hydrothermally activated self-assembly of Au nanoparticles. J. Phys. Chem. C 2007, 111, 6970–6975.CrossRefGoogle Scholar
  21. [21]
    Mohanan, J. L.; Arachchige, U. I.; Brock, S. L. Porous semiconductor chalcogenide aerogels. Science 2005, 307, 397–400.ADSPubMedGoogle Scholar
  22. [22]
    Arachchige, U. I.; Brock, S. L. Sol-gel assembly of CdSe nanoparticles to form porous aerogel networks. J. Am. Chem. Soc. 2006, 128, 7964–7971.CrossRefPubMedGoogle Scholar
  23. [23]
    Hanrath, T.; Veldman, D.; Choi, J. J.; Christova, C. G.; Wienk, M. M.; Janssen, R. A. J. PbSe nanocrystal network formation during pyridine ligand displacement. ACS Appl. Mater. Interfaces 2009, 1, 244–250.CrossRefPubMedGoogle Scholar
  24. [24]
    Urban, J. J.; Talapin, D. V.; Shevchenko, E. V.; Murray, C. B. Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films. J. Am. Chem. Soc. 2006, 128, 3248–3255.CrossRefPubMedGoogle Scholar
  25. [25]
    Murphy, J. E.; Beard, M. C.; Norman, A. G.; Ahrenkiel, S. P.; Johnson, J. C.; Yu, P.; Micic, O. I.; Ellingson, R. J.; Nozik, A. J. PbTe colloidal nanocrystals: Synthesis, characterization, and multiple exciton generation. J. Am. Chem. Soc. 2006, 128, 3241–3247.CrossRefPubMedGoogle Scholar
  26. [26]
    Dughaish, Z. H. Lead telluride as a thermoelectric material for thermoelectric power generation. Physica B 2002, 322, 205–223.CrossRefADSGoogle Scholar
  27. [27]
    Sootsman, J. R.; Kong, H.; Uher, C.; D’Angelo, J. J.; Wu, C. I.; Hogan T. P.; Caillat, T.; Kanatzidis, M. G. Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. Angew. Chem. Int. Ed. 2008, 45, 8618–8622.CrossRefGoogle Scholar
  28. [28]
    Zhang, H.; Zhou, Z.; Yang, B. The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles. J. Phys. Chem. B 2003, 107, 8–13.CrossRefGoogle Scholar
  29. [29]
    Wang, Q.; Li, H.; Chen, L. Q.; Huang, X. J. Monodispersed hard carbon spherules with uniform nanopores. Carbon 2001, 39, 2211–2214.CrossRefGoogle Scholar
  30. [30]
    Yang, R. Z.; Qiu, X. P.; Zhang, H. R.; Li, J. Q.; Zhu, W. T.; Wang, Z. X.; Huang, X. J.; Chen, L. Q. Monodispersed hard carbon spherules as a catalyst support for the electrooxidation of methanol. Carbon 2005, 43, 11–16.CrossRefGoogle Scholar
  31. [31]
    Sun, X. M.; Li, Y. D. Ga2O3 and GaN semiconductor hollow spheres. Angew. Chem. Int. Ed. 2004, 43, 3827–3831.CrossRefGoogle Scholar
  32. [32]
    Sun, X. M.; Li, Y. D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed. 2004, 43, 597–601.CrossRefGoogle Scholar
  33. [33]
    Qian, H. S.; Yu, S. H.; Luo, L. B.; Gong, J. Y.; Fei, L. F.; Liu, X. M. Synthesis of uniform Te@carbon-rich composite nanocables with photoluminescence properties and carbonaceous nanofibers by the hydrothermal carbonization of glucose. Chem. Mater. 2006, 18, 2102–2108.CrossRefGoogle Scholar
  34. [34]
    Mays, C. W.; Vermaak, J. S.; Kuhlmann-Wilsdorf, D. On surface stress and surface tension. II. Determination of the surface stress of gold. Surf. Sci. 1968, 12, 134–140.CrossRefADSGoogle Scholar
  35. [35]
    Tong, H.; Zhu, Y. J.; Yang, L. X.; Li, L.; Zhang, L. Lead chalcogenide nanotubes synthesized by biomolecule-assisted self-assembly of nanocrystals at room temperature. Angew. Chem. Int. Ed. 2006, 45, 7739–7742.CrossRefGoogle Scholar
  36. [36]
    Klufers, P.; Schulhmacher, J. Sixteenfold deprotonated ?-cyclodextrin tori as anions in a hexadecanuclear lead(II) alkoxide. Angew. Chem. Int. Ed. 1994, 33, 1863–1865.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Chemical and Biomolecular Engineering DepartmentUniversity of CaliforniaLos AngelesUSA
  2. 2.Mechanical Engineering DepartmentUniversity of CaliforniaRiversideUSA
  3. 3.Materials Research DepartmentToyota Motor Engineering and Manufacturing North America, Inc.Ann ArborUSA

Personalised recommendations