Nano Research

, Volume 3, Issue 7, pp 528–536 | Cite as

Direct comparison of catalyst-free and catalyst-induced GaN nanowires

  • Caroline Chèze
  • Lutz Geelhaar
  • Oliver Brandt
  • Walter M. Weber
  • Henning Riechert
  • Steffen Münch
  • Ralph Rothemund
  • Stephan Reitzenstein
  • Alfred Forchel
  • Thomas Kehagias
  • Philomela Komninou
  • George P. Dimitrakopulos
  • Theodoros Karakostas
Open Access
Research Article

Abstract

GaN nanowires have been grown by molecular beam epitaxy either catalyst-free or catalyst-induced by means of Ni seeds. Under identical growth conditions of temperature and V/III ratio, both types of GaN nanowires are of wurtzite structure elongated in the Ga-polar direction and are constricted by M-plane facets. However, the catalyst-induced nanowires contain many more basal-plane stacking faults and their photoluminescence is weaker. These differences can be explained as effects of the catalyst Ni seeds.

Keywords

Nanowire nanocolumn molecular beam epitaxy (MBE) photoluminescence stacking faults catalyst 

References

  1. [1]
    Lieber, C. M.; Wang Z. L. Functional nanowires. MRS Bull. 2007, 32, 99–108.Google Scholar
  2. [2]
    Wagner, R. S.; Ellis W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.CrossRefADSGoogle Scholar
  3. [3]
    Kamins, T. I.; Williams, R. S.; Basile, D. P.; Hesjedal, T.; Harris, J. S. Ti-catalyzed Si nanowires by chemical vapor deposition: Microscopy and growth mechanisms. J. Appl. Phys. 2001, 89, 1008–1016.CrossRefADSGoogle Scholar
  4. [4]
    Persson, A. I.; Larsson, M. W.; Stenstrom, S.; Ohlsson, B. J.; Samuelson, L.; Wallenberg, L. R. Solid-phase diffusion mechanism for GaAs nanowire growth. Nat. Mater. 2004, 3, 677–681.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Putnam, M. C.; Filler, M. A.; Kayes, B. M.; Kelzenberg, M. D.; Guan, Y.; Lewis, N. S.; Eiler, J. M.; Atwater, H. A. Secondary ion mass spectrometry of vapor.liquid.solid grown, Au-catalyzed, Si wires. Nano Lett. 2008, 8, 3109–3113.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Oh, S. H.; Benthem, K. V.; Molina, S. I.; Borisevich, A. Y.; Luo, W.; Werner, P.; Zakharov, N. D.; Kumar, D.; Pantelides, S. T.; Pennycook, S. J. Point defect configurations of supersaturated Au atoms inside Si nanowires. Nano Lett. 2008, 8, 1016–1019.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Allen, J. E.; Hemesath, E. R.; Perea, D. E.; Lensch-Falk, J. L.; Li, Z. Y.; Yin, F.; Gass, M. H.; Wang, P.; Bleloch, A. L.; Palmer, R. E.; Lauhon, L. J. High-resolution detection of Au catalyst atoms in Si nanowires. Nat. Nanotechnol. 2008, 3, 168–173.CrossRefPubMedADSGoogle Scholar
  8. [8]
    Zhang, R. Q.; Lifshitz, Y.; Lee, S. T. Oxide-assisted growth of semiconducting nanowires. Adv. Mater. 2003, 15, 635–640.CrossRefGoogle Scholar
  9. [9]
    Noborisaka, J; Motohisa, J; Fukui, T. Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapourphase epitaxy. Appl. Phys. Lett. 2005, 86, 213102.CrossRefADSGoogle Scholar
  10. [10]
    Mohammad, S. N. Self-catalysis: A contamination-free, substrate-free growth mechanism for single-crystal nanowire and nanotube growth by chemical vapor deposition. J. Chem. Phys. 2006, 125, 094705.CrossRefADSGoogle Scholar
  11. [11]
    Mandl, B.; Stangl, J.; Mårtensson, T.; Mikkelsen, A.; Eriksson, J.; Karlsson, L. S.; Bauer, G.; Samuelson, L.; Seifert, W. Au-free epitaxial growth of InAs nanowires. Nano Lett. 2006, 6, 1817–1821.CrossRefPubMedADSGoogle Scholar
  12. [12]
    Kim, B. S.; Koo, T. W.; Lee, J. H.; Kim, D. S.; Jung, Y. C.; Hwang, S. W.; Choi, B. L.; Lee, E. K.; Kim, J. M.; Whang, D. Catalyst-free growth of single-crystal silicon and germanium nanowires. Nano Lett. 2009, 9, 864–869.CrossRefPubMedADSGoogle Scholar
  13. [13]
    Kuykendall, T.; Ulrich, P.; Aloni, S.; Yang, P. Complete composition tunability of InGaN nanowires using a combinatorial approach. Nat. Mater. 2007, 6, 951–956.CrossRefPubMedADSGoogle Scholar
  14. [14]
    Geelhaar, L.; Chèze, C.; Weber, W. M.; Averbeck, R.; Riechert, H.; Kehagias, T.; Komninou, P.; Dimitrakopulos, G. P.; Karakostas, T. Axial and radial growth of Ni-induced GaN nanowires. Appl. Phys. Lett. 2007, 91, 093113.CrossRefADSGoogle Scholar
  15. [15]
    Chèze, C. Investigation and comparison of GaN nanowire nucleation and growth by the catalyst-assisted and selfinduced approach. Ph.D. Dissertation, Humboldt-Universität zu Berlin, Germany, 2010.Google Scholar
  16. [16]
    Yoshizawa, M.; Kikuchi, A.; Mori, M.; Fujita, N.; Kishino, K. Growth of self-organized GaN nanostructures on Al2O3(0001) by RF-radical source molecular beam epitaxy. Jpn. J. Appl. Phys. 1997, 36, L459–L462.CrossRefADSGoogle Scholar
  17. [17]
    Calleja, E.; Ristić, J.; Fernández-Garrido, S.; Cerutti, L.; Sánchez-García, M. A.; Grandal, J.; Trampert, A.; Jahn, U.; Sánchez, G.; Griol, A.; Sánchez, B. Growth, morphology, and structural properties of group-III-nitride nanocolumns and nanodisks. Phys. Status Solidi B 2007, 244, 2816–3837.CrossRefADSGoogle Scholar
  18. [18]
    Debnath, R. K.; Meijers, R.; Richter, T.; Stoica, T.; Calarco, R.; Lüth, H. Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111). Appl. Phys. Lett. 2007, 90, 123117.CrossRefADSGoogle Scholar
  19. [19]
    Calarco, R.; Meijers, R. J.; Debnath, R. K.; Stoica, T.; Sutter, E.; Lüth, H. Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy. Nano Lett. 2007, 7, 2248–2251.CrossRefPubMedADSGoogle Scholar
  20. [20]
    Kehagias, T.; Komninou, P.; Dimitrakopulos, G. P.; Cheze, C.; Geelhaar, L.; Riechert, H.; Karakostas, T. Atomic-scale configuration of catalyst particles on GaN nanowires. Phys. Status Solidi C 2008, 5, 3716–3719.CrossRefADSGoogle Scholar
  21. [21]
    Furtmayr, F.; Vielemeyer, M.; Stutzmann, M.; Arbiol, J.; Estradé, S.; Peirò, F.; Morante, J. R.; Eickhoff, M. Nucleation and growth of GaN nanorods on Si(111) surfaces by plasma-assisted molecular beam epitaxy—The influence of Si- and Mg-doping. J. Appl. Phys. 2008, 104, 034309.CrossRefADSGoogle Scholar
  22. [22]
    Qian, F.; Li, Y.; Gradečak, S.; Park, H. G.; Dong, Y.; Ding, Y.; Wang, Z. L.; Lieber, C. M. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 2008, 7, 701–706.CrossRefPubMedADSGoogle Scholar
  23. [23]
    Kuykendall, T.; Pauzaukie, P. J.; Zhang, Y. F.; Goldberger, J.; Sirbuly, D.; Denlinger, J.; Yang, P. D. Crystallographic alignment of high-density gallium nitride nanowire arrays. Nat. Mater. 2004, 3, 524–528.CrossRefPubMedADSGoogle Scholar
  24. [24]
    Chin, A. H.; Ahn, T. S.; Li. H; Vaddiraju. S; Bardeen, C. J.; Ning, C. Z.; Sunkara, M. K. Photoluminescence of GaN nanowires of different crystallographic orientations. Nano Lett. 2007, 7, 626–631.CrossRefPubMedADSGoogle Scholar
  25. [25]
    Cherns, D.; Meshi, L.; Griffiths, I.; Khongphetsak, S.; Novikov, S. V.; Farley, N.; Campion, R. P.; Foxon, C. T. Defect reduction in GaN/(0001) sapphire films grown by molecular beam epitaxy using nanocolumn intermediate layers. Appl. Phys. Lett. 2008, 92, 121902.CrossRefADSGoogle Scholar
  26. [26]
    Smith, A. R.; Feenstra, R. M.; Greve, D. W.; Neugebauer, J.; Northrup, J. E. Reconstructions of the GaN\( (000\bar 1) \) surface. Phys. Rev. Lett. 1997, 79, 3934–3937.CrossRefADSGoogle Scholar
  27. [27]
    Yoshikawa, A.; Xu, K. Polarity selection process and polarity manipulation of GaN in MOVPE and RF-MBE growth. Thin Solid Films 2002, 412, 38–43.CrossRefADSGoogle Scholar
  28. [28]
    Georgakilas, A.; Mikroulis, S.; Cimalla, V.; Zervos, M.; Kostopoulos, A.; Komninou, P.; Kehagias, T.; Karakostas, T. Effects of the sapphire nitridation on the polarity and structural properties of GaN layers grown by plasma-assisted MBE. Phys. Status Solidi A 2001, 188, 567–570.CrossRefADSGoogle Scholar
  29. [29]
    Lari, L.; Murray, R. T.; Bullough, T. J.; Chalker, P. R.; Gass, M.; Chèze, C.; Geelhaar, L.; Riechert, H. Defect characterization and analysis of III–V nanowires grown by Ni-promoted MBE. Phys. Status Solidi A 2008, 205, 2589–2592.CrossRefADSGoogle Scholar
  30. [30]
    Zhao, Y.; Tu, W.; Bae, I. T.; Seong, T. Y. Growth of cubic GaN by phosphorus-mediated molecular beam epitaxy. Appl. Phys. Lett. 1999, 74, 3182–3184.CrossRefADSGoogle Scholar
  31. [31]
    Chisholm, J. A.; Bristowe, P. D. Ab initio study of the effect of doping on stacking faults in GaN. J. Cryst. Growth 2001, 230, 432–437.CrossRefADSGoogle Scholar
  32. [32]
    Cimpoiasu, E.; Stern, E.; Klie, R.; Munden, R. A.; Cheng, G.; Reed, M. A. The effect of Mg doping on GaN nanowires. Nanotechnology 2006, 17, 5735–5739.CrossRefADSGoogle Scholar
  33. [33]
    Arbiol, J.; Estradé, S.; Prades, J. D.; Cirera, A.; Furtmayr, F.; Stark, C.; Laufer, A.; Stutzmann, M.; Eickhoff, M.; Gass, M. H., et al. Triple-twin domains in Mg doped GaN wurtzite nanowires: Structural and electronic properties of this zinc-blende-like stacking. Nanotechnology 2009, 20, 145704.CrossRefPubMedADSGoogle Scholar
  34. [34]
    Glas, F.; Harmand, J. C.; Patriarche, G. Why does wurtzite form in nanowires of III–V zinc-blende semiconductors? Phys. Rev. Lett. 2007, 99, 146101.CrossRefPubMedADSGoogle Scholar
  35. [35]
    Tarsa, E. J.; Heying, B.; Wu, X. H.; Fini, P.; DenBaars, S. P.; Speck, J. S. Homoepitaxial growth of GaN under Ga-stable and N-stable conditions by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 1997, 82, 5472–5479.CrossRefADSGoogle Scholar
  36. [36]
    Zywietz, T.; Neugebauer, J.; Scheffler, M. Adatom diffusion at GaN (0001) and \( (000\bar 1) \) surfaces. Appl. Phys. Lett. 1998, 73, 487–489.CrossRefADSGoogle Scholar
  37. [37]
    Shi, B. M.; Xie, M. H.; Wu, H. S.; Wang, N.; Tong, S. Y. Transition between wurtzite and zinc-blende GaN: An effect of deposition condition of molecular-beam epitaxy. App. Phys. Lett. 2006, 89, 151921.CrossRefADSGoogle Scholar
  38. [38]
    Robins, L. H., Bertness, K. A., Barker, J. M., Sanford, N. A.; Schlager, J. B. Optical and structural study of GaN nanowires grown by catalyst-free molecular beam epitaxy. I. Near-band-edge luminescence and strain effects. J. Appl. Phys. 2007, 101, 113505 and references therein.CrossRefADSGoogle Scholar
  39. [39]
    Liu, R.; Bell, A.; Ponce, F. A.; Chen, C. Q.; Yang, J. W.; Kahn, M. A. Luminescence from stacking faults in gallium nitride. Appl. Phys. Lett. 2005, 86, 021908.CrossRefADSGoogle Scholar
  40. [40]
    Paskov, P. P.; Schifano, R.; Monemar, B.; Paskova, T.; Figge, S.; Hommel, D. Emission properties of a-plane GaN grown by metal-organic chemical-vapor deposition. J. Appl. Phys. 2005, 98, 093519.CrossRefADSGoogle Scholar
  41. [41]
    Salviati, G.; Albrecht, M.; Zanotti-Fregonara, C.; Armani, N.; Mayer, M.; Shreter, Y.; Guzzi, M.; Melnik, Y.; Vvassilevski, K.; Dmitriev, V. A.; Strunk, H. P. Cathodoluminescence and transmission electron microscopy study of the influence of crystal defects on optical transitions in GaN. Phys. Status Solidi A 1999, 171, 325–339.CrossRefADSGoogle Scholar
  42. [42]
    Calleja, E.; Sánchez-García, M. A.; Sánchez, F. J.; Calle, F.; Naranjo, F. B.; Muñoz, E.; Jahn, U.; Ploog, K. Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy. Phys. Rev. B 2000, 62, 16826–16834.CrossRefADSGoogle Scholar
  43. [43]
    Furtmayr, F.; Vielemeyer, M.; Stutzmann, M.; Laufer, A.; Meyer, B. K.; Eickhoff, M. Optical properties of Si- and Mg-doped gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 2008, 104, 074309.CrossRefADSGoogle Scholar
  44. [44]
    Yoo, J.; Hong, Y. J.; An, S. J.; Yi, G. C.; Chon, B.; Joo, T.; Kim, J. W.; Lee, J. S. Photoluminescent characteristics of Ni-catalyzed GaN nanowires. Appl. Phys. Lett. 2006, 89, 043124.CrossRefADSGoogle Scholar
  45. [45]
    Corfdir, P.; Lefebvre, P.; Ristić, J.; Valvin, P.; Calleja, E.; Trampert, A.; Ganière, J. D.; Deveaud-Plédran, B. Time-resolved spectroscopy on GaN nanocolumns grown by plasma assisted molecular beam epitaxy on Si substrates. J. Appl. Phys. 2009, 105, 013113.CrossRefADSGoogle Scholar
  46. [46]
    Brandt, O.; Yang, B.; Wunsche, H. J.; Jahn, U.; Ringling, J.; Paris, G.; Grahn, H. T.; Ploog, K. H. Impact of exciton diffusion on the optical properties of thin GaN layers. Phys. Rev. B 1998, 58, R13407–R13410.CrossRefADSGoogle Scholar
  47. [47]
    Azize, M.; Leroux, M.; Laugt, M.; Gibart, P.; Bougrioua, Z. Strain and microstructure in Fe-doped GaN layers grown by low pressure metalorganic vapour phase epitaxy. Phys. Status Solidi A 2006, 203, 1744–1748.CrossRefADSGoogle Scholar
  48. [48]
    Aggerstam, T.; Pinos, A.; Marcinkevicius, S.; Linnarsson, M.; Lourdudoss, S. Electron and hole capture cross-sections of Fe acceptors in GaN:Fe epitaxially grown on sapphire. J. Electron. Mater. 2007, 36, 1621–1624.CrossRefADSGoogle Scholar
  49. [49]
    Lari, L.; Murray, R. T.; Bullough, T. J.; Chalker, P. R.; Gass, M. H.; Chèze, C.; Geelhaar, L.; Riechert, H. Electron microscopy analysis of AlGaN/GaN nanowires grown by catalyst-assisted molecular beam epitaxy. In Microscopy of Semiconducting Materials 2007: Proceedings of the 15th Conference, 2–5 April 2007, Cambridge, UK; Cullis A. G; Midgley, P. A., Eds; Springer & Canopus Publishing Limited 2007, pp. 221–224.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Caroline Chèze
    • 1
    • 5
  • Lutz Geelhaar
    • 1
    • 5
  • Oliver Brandt
    • 1
  • Walter M. Weber
    • 2
    • 5
  • Henning Riechert
    • 1
    • 4
  • Steffen Münch
    • 3
  • Ralph Rothemund
    • 3
  • Stephan Reitzenstein
    • 3
  • Alfred Forchel
    • 3
  • Thomas Kehagias
    • 4
  • Philomela Komninou
    • 4
  • George P. Dimitrakopulos
    • 4
  • Theodoros Karakostas
    • 4
  1. 1.Paul-Drude-Institut für FestkörperelektronikBerlinGermany
  2. 2.NaMLab gGmbHDresdenGermany
  3. 3.Technische PhysikUniversität WürzburgWürzburgGermany
  4. 4.Physics DepartmentAristotle UniversityThessalonikiGreece
  5. 5.QimondaMunichGermany

Personalised recommendations