Nano Research

, Volume 3, Issue 7, pp 490–495 | Cite as

Holed nanostructures formed by aluminum droplets on a GaAs substrate

Open Access
Research Article

Abstract

We have studied the morphology evolution of holed nanostructures formed by aluminum droplet epitaxy on a GaAs surface. Unique outer rings with concentric inner holed rings were observed. Further, an empirical equation to describe the size distribution of the outer rings in the holed nanostructures has been established. The contour line generated by the equation provides physical insights into quantum ring formation by droplets of group III materials on III–V substrates.

Keywords

Droplet epitaxy aluminum droplets MBE GaAs holed nanostructures 

References

  1. [1]
    García, J. M.; Medeiros-Ribeiro, G.; Schmidt, K.; Ngo, T.; Feng, J. L.; Lorke, A.; Kotthaus, J.; Petroff, P. M. Intermixing and shape changes during the formation of InAs self-assembled quantum dots. Appl. Phys. Lett. 1997, 71, 2014–2016.CrossRefADSGoogle Scholar
  2. [2]
    Mlakar, T.; Biasiol, G.; Heun, S.; Sorba, L.; Vijaykumar, T.; Kulkarni, G. U.; Spreafico, V.; Prato, S. Conductive atomic force microscopy of InAs/GaAs quantum rings. Appl. Phys. Lett. 2008, 92, 192105–1–3.CrossRefADSGoogle Scholar
  3. [3]
    Szafran, B. Correlated persistent currents in a stack of semiconductor quantum rings. Phys. Rev. B 2008, 77, 235314.CrossRefADSGoogle Scholar
  4. [4]
    Dai, J. -H, Lee, J. -H.; Lin, Y. -L.; Lee, S. -C. In(Ga)As quantum rings for terahertz detectors. Jpn. J. Appl. Phys. 2008, 47, 2924–2926.CrossRefADSGoogle Scholar
  5. [5]
    Bruno-Alfonso, A.; Latgé, A. Quantum rings of arbitrary shape and non-uniform width in a threading magnetic field. Phys. Rev. B 2008, 77, 205303–1–8.CrossRefADSGoogle Scholar
  6. [6]
    Chi, F.; Li, S. -S. Spin-polarized transport through an Aharonov-Bohm interferometer with Rashba spin-orbit interaction. J. Appl. Phys. 2006, 100, 113703.CrossRefADSGoogle Scholar
  7. [7]
    Fomin, V. M.; Gladilin, V. N.; Klimin, S. N.; Devreese, J. T.; Kleemans, N. A.; Koenraad, P. M. Theory of electron energy spectrum and Aharonov-Bohm effect in self-assembled InxGa1-xAs quantum rings in GaAs. Phys. Rev. B. 2007, 76, 235320.CrossRefADSGoogle Scholar
  8. [8]
    Pomraenke, R.; Lienau, C.; Mazur, Y. I.; Wang, Z. M.; Liang, B.; Tarasov, G. G.; Salamo, G. Near-field optical spectroscopy of GaAs/AlyGa1-yAs quantum dot pairs grown by high-temperature droplet epitaxy. J. Phys. Rev. B. 2008, 77, 075314.CrossRefADSGoogle Scholar
  9. [9]
    Belhadj, T.; Kuroda, T.; Simon, C. -M.; Amand, T.; Mano, T.; Sakoda, K.; Koguchi, N.; Marie, X.; Urbaszek, B. Optically monitored nuclear spin dynamics in individual GaAs quantum dots grown by droplet epitaxy. Phys. Rev. B. 2008, 78, 205325.CrossRefADSGoogle Scholar
  10. [10]
    Koguchi, N.; Ishige, K. Growth of GaAs epitaxial microcrystals on an s-terminated GaAs substrate by successive irradiation of Ga and As molecular-beams. Jpn. J. Appl. Phys. 1993, 32, 2052–2058.CrossRefADSGoogle Scholar
  11. [11]
    Sablon, K. A.; Wang, Z. M.; Salamo, G. J. Composite droplets: Evolution of InGa and AlGa alloys on GaAs(100). Nanotechnology 2008, 19, 125609.CrossRefADSGoogle Scholar
  12. [12]
    Kim, J. S.; Jeong, M. S.; Byeon, C. C.; Ko, D. K.; Lee, J.; Kim, J. S.; Koguchi, N. GaAs quantum dots with a high density on a GaAs (111)A substrate. Appl. Phys. Lett. 2006, 88, 241911.CrossRefADSGoogle Scholar
  13. [13]
    Heyn, C.; Stemmann, A.; Schramm, A.; Welsch, H.; Hansen, W.; Nemcsics, Á. Regimes of GaAs quantum dot selfassembly by droplet epitaxy. Phys. Rev. B. 2007, 76, 075317.CrossRefADSGoogle Scholar
  14. [14]
    Pankaow, N.; Panyakeow, S.; Ratanathammaphan, S. Formation of In0.5Ga0.5As ring-and-hole structure by droplet molecular beam epitaxy. J. Crystal Growth 2009, 311, 1832–1835.CrossRefADSGoogle Scholar
  15. [15]
    Zhao, C.; Chen, Y. H.; Xu, B.; Tang, C. G.; Wang, Z. G.; Ding, F. Study of the wetting layer of InAs/GaAs nanorings grown by droplet epitaxy. Appl. Phys. Lett. 2008, 92, 063122.CrossRefADSGoogle Scholar
  16. [16]
    Tong, C. Z.; Yoon, S. F. Investigation of the fabrication mechanism of self-assembled GaAs quantum rings grown by droplet epitaxy. Nanotechnology 2008, 19, 365604.CrossRefGoogle Scholar
  17. [17]
    Somaschini, C.; Bietti, S.; Koguchi, N.; Sanguinetti, S. Fabrication of multiple concentric nanoring structures. Nano Lett. 2009, 9, 3419–3424.CrossRefPubMedADSGoogle Scholar
  18. [18]
    Stemmann, A.; Heyn, C.; Köppen, T.; Kipp, T.; Hansen, W. Local droplet etching of nanoholes and rings on GaAs and AlGaAs surfaces. Appl. Phys. Lett. 2008, 93, 123108(3).CrossRefADSGoogle Scholar
  19. [19]
    Heyn, C.; Stemmann, A.; Hansen, W. Dynamics of selfassembled droplet etching. Appl. Phys. Lett. 2009, 95, 173110.CrossRefADSGoogle Scholar
  20. [20]
    Li, A. Z.; Wang, Z. M.; Wu, J.; Xie, Y.; Sablon, K. A.; Salamo, G. J. Evolution of holed nanostructures on GaAs (001). Cryst. Growth Des. 2009, 9, 2941–2943.CrossRefGoogle Scholar
  21. [21]
    Wang, Z. M.; Liang, B. L.; Sablon, K. A.; Salamo, G. J. Nanoholes fabricated by self-assembled gallium nanodrill on GaAs(100). Appl. Phys. Lett. 2007, 90, 113120.CrossRefADSGoogle Scholar
  22. [22]
    Liang, B. L.; Wang, Z. M.; Lee, J. H.; Sablon, K.; Mazur, Y. I.; Salamo, G. J. Low density InAs quantum dots grown on GaAs nanoholes. Appl. Phys. Lett. 2006, 89, 043113.CrossRefADSGoogle Scholar
  23. [23]
    Alonso-Gonzalez, P.; Alen, B.; Fuster, D.; Gonzalez, Y.; Gonzalez, L.; Martinez-Pastor. Formation and optical characterization of single InAs quantum dots grown on GaAs nanoholes. J. Appl. Phys. Lett. 2007, 91, 163104.CrossRefADSGoogle Scholar
  24. [24]
    Alonso-González, P.; Fuster, D.; González, L.; Martín-Sánchez, J.; González, Y. Low density InAs quantum dots with control in energy emission and top surface location. Appl. Phys. Lett. 2008, 93, 183106.CrossRefADSGoogle Scholar
  25. [25]
    Heyn, C.; Stemmann, A.; Köppen, T.; Strelow, C.; Kipp, T.; Grave, M.; Mendach, S.; Hansen, W. Highly uniform and strain-free GaAs quantum dots fabricated by filling of selfassembled nanoholes. Appl. Phys. Lett. 2009, 94, 183113.CrossRefADSGoogle Scholar
  26. [26]
    Li, X. L.; Yang, G. W. Growth mechanisms of quantum ring self-assembly upon droplet epitaxy. J. Phys. Chem. C 2008, 112, 7693–7697.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institute of Nanoscale Science and EngineeringUniversity of ArkansasFayettevilleUSA

Personalised recommendations