Skip to main content
Log in

Mechanism of Aluminum Droplet Nucleation and Ripening on GaAs(001) Surface by Molecular Beam Epitaxy

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A study is conducted on the nucleation process of aluminum droplets on a GaAs(001) surface during droplet epitaxial growth, which reveals the influencing factors in the nucleation process, including the substrate temperature and the deposition rate, when other conditions are unchanged. In addition, the minimum atomic number for the initially incomplete state, the initially completed state and the completed state are calculated to be 1, 2 and 5, respectively. In the meantime, based on the extended thermodynamic model, the energy \(\left( {E_{r} } \right)\) and ideal contact angle \(\left( {\theta_{0} } \right)\) in the process of droplet ripening and nucleation are 2.5 eV and 73.5°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Sergii, O.I. Datsenko, S. Luca, G. Trevisi, F. Paola, B. Li, D. Lin, and J. Qu, InAs/InGaAs Quantum Dots Confined by InAlAs Barriers for Enhanced Room Temperature Light Emission: Photoelectric Properties and Deep Levels. Microelectron. Eng. 238, 111514 (2021).

    Article  Google Scholar 

  2. A. Najla, K. Rahul, K. Andrian, Y. Maidaniuk, S.K. Saha, A.A. Alnami, R. Alhelais, A. Kawagy, M.E. Ware, Y.I. Mazur, and G.J. Salamob, InAs Nanostructures for Solar Cell: Improved Efficiency by Submonolayer Quantum Dot. Sol. Energ. Mat. Sol. C. 224, 111026 (2021).

    Article  Google Scholar 

  3. Y. Yifat, M. Ackerman, and G.S. Philippe, Mid-IR Colloidal Quantum dot Detectors Enhanced by Optical Nano-Antennas. Appl. Phys. Lett 110, 041106 (2017).

    Article  Google Scholar 

  4. S. Yoon, S.H. Lee, J.C. Shin, J.S. Kim, S.J. Lee, J.Y. Leem, and S. Krishna, Photoreflectance Study on the Photovoltaic Effect in InAs/GaAs Quantum Dot Solar Cell. Curr. Appl. Phys 18, 667 (2018).

    Article  Google Scholar 

  5. M.G. Barseghyan, A.K. Manaselyan, D. Larozec, and A.A. Kirakosyan, Impurity-Modulated Aharonov-Bohm Oscillations and Intraband Optical Absorption in Quantum Dot–Ring Nanostructures. Phys. E. 81, 31–36 (2016).

    Article  CAS  Google Scholar 

  6. N.W. Strom, Z.M. Wang, J.H. Lee, Z.Y. Abuwaar, Y.I. Mazur, and G.J. Salamo, Self-Assembled InAs Quantum Dot Formation on GaAs Ring-Like Nanostructure Templates. Nanoscale Res. Lett 2, 112 (2007).

    Article  CAS  Google Scholar 

  7. J.M. Garcı́a, D. Granados, J.P. Silveira, and F. Briones, In Segregation Effects During Quantum Dot and Quantum Ring Formation on GaAs(001). Microelectron. J. 35, 7 (2004).

    Article  Google Scholar 

  8. S. Linlin, L. Baolai, W. Ying, Y. Qing, G. Qinglin, W. Shufang, F. Guangsheng, L.D. Huffaker, Y.I. Mazur, M.E. Ware, Y. Maidaniuk, and J.S. Gregory, Abnormal Photoluminescence for GaAs/Al0.2Ga0.8As Quantum Dot-Ring Hybrid Nanostructure Grown by Droplet Epitaxy. J. Lumin 195, 187–192 (2018).

    Article  Google Scholar 

  9. T. Suzuki and T. Nishinaga, Real Time Observation and Formation Mechanism of Ga Droplet During Molecular Beam Epitaxy Under Excess Ga flux. J. Cryst. Growth 142, 61 (1994).

    Article  CAS  Google Scholar 

  10. M. Jo, T. Mano, Y. Sakuma, and K. Sakoda, Extremely High-Density GaAs Quantum Dots Grown by Droplet Epitaxy. Appl. Phys. Lett 100, 212113 (2012).

    Article  Google Scholar 

  11. M. Benyoucef, Z. Verena, P.R. Johann, K. Tim, W.S. Andreas, and A. Thomas, Single-Photon Emission from Single InGaAs/GaAs Quantum Dots Grown by Droplet Epitaxy at High Substrate Temperature. Nanoscale. Res. Lett 7, 493 (2012).

    Article  Google Scholar 

  12. P. Yu, W. Jiang, L. Gao, H. Liu, and Z. Wang, InGaAs and GaAs Quantum dot Solar Cells Grown by Droplet Epitaxy. Sol. Energ. Mat. Sol. C 161, 377 (2016).

    Article  Google Scholar 

  13. N. Pankaow, S. Panyakeow, and S. Ratanathammaphan, Formation of In0.5Ga0.5As ring-and-hole Structure by Droplet Molecular Beam Epitaxy. J. Cryst. Growth 311, 1832 (2009).

    Article  CAS  Google Scholar 

  14. T. Mano, T. Kuroda, S. Sanguinetti, T. Ochiai, T. Tateno, J.S. Kim, T. Noda, M. Kawabe, K. Sakoda, G. Kido, and N. Koguchi, Self-Assembly of Concentric Quantum Double Rings. Nano Lett. 5, 425 (2005).

    Article  CAS  Google Scholar 

  15. H.D. Kim, R. Okuyama, K. Kyhm, M. Eto, R.A. Taylor, A.L. Nicolet, M. Potemski, G. Nogues, L.S. Dang, K.C. Je, J. Kim, J.H. Kyhm, K.H. Yoen, E.H. Lee, J.Y. Kim, K. Han, W. Choi, and J. Song, Observation of a Biexciton Wigner Molecule by Fractional Optical Aharonov-Bohm Oscillations in a Single Quantum Ring. Nano Lett. 16, 27 (2016).

    Article  CAS  Google Scholar 

  16. Z.Y. Abuwaar, Y.I. Mazur, J.H. Lee, Z.M. Wang, and G. Salamo, Optical Behavior of GaAs/AlGaAs Ringlike Nanostructures. J. Appl. Phys 101, 24311 (2007).

    Article  Google Scholar 

  17. S. Kanjanachuchai and C.S. Euaruksakul, Self-Running Ga Droplets on GaAs (111) A and (111) B Surfaces. ACS Appl. Mater. Inter 5, 7709 (2013).

    Article  CAS  Google Scholar 

  18. B.A. Trisna, N. Nakareseisoon, W. Eiwwongcharoen, S. Panyakeow, and S. Kanjanachuchai, Reliable Synthesis of Self-Running Ga Droplets on GaAs(001) in MBE using RHEED Patterns. Nanoscale Res. Lett 10, 184 (2015).

    Article  Google Scholar 

  19. M.G. Barseghyan, A.A. Kirakosyan, and D. Laroze, Laser Driven Intraband Optical Transitions in Two-Dimensional Quantum Dots and Quantum Rings. Opt. Commun. 383, 571–576 (2017).

    Article  CAS  Google Scholar 

  20. N. Esser, A.M. Frisch, A. Roseler, S. Schintke, C. Goletti, and B. Fimland, Optical Resonances of Indium Islands on GaAs(001) Observed by Reflectance Anisotropy Spectroscopy. Phys. Rev. B 67, 125306 (2003).

    Article  Google Scholar 

  21. V. Mantovani, S. Sanguinetti, M. Guzzi, E. Grilli, M. Gurioli, K. Watanabe, and N. Koguchi, Low Density GaAs/AlGaAs Quantum Dots Grown by Modified Droplet Epitaxy. J. Appl. Phys 96, 4416 (2004).

    Article  CAS  Google Scholar 

  22. T. Mano, T. Kuroda, K. Mitsuishi, Y. Nakayama, T. Noda, and K. Sakoda, GaAs/AlGaAs Quantum dot Laser Fabricated on GaAs(311) A Substrate by Droplet Epitaxy. Appl. Phys. Lett 93, 203110 (2008).

    Article  Google Scholar 

  23. A.Z. Li, Z.M. Wang, J. Wu, and G.J. Salamo, Holed Nanostructures Formed by Aluminum Droplets on a GaAs Substrate. Nano Res 3, 490 (2010).

    Article  CAS  Google Scholar 

  24. M. Zocher, C.H. Heyn, and W. Hansen, Droplet Etching with Indium–INTERMIXING and Lattice Mismatch. J. Cryst. Growth 512, 219–222 (2019).

    Article  CAS  Google Scholar 

  25. D. Majchrzak, S. Gorantla, E. Zdanowicz, A. Pieniążek, J. Serafińczuk, K. Moszak, D. Pucicki, M. Grodzicki, B.J. Kowalski, R. Kudrawiec, and D. Hommel, Detailed Surface Studies on the Reduction of Al Incorporation into AlGaN Grown by Molecular BEAM Epitaxy in the Ga-Droplet Regime. Vacuum 202, 111168 (2022).

    Article  CAS  Google Scholar 

  26. J.A. Venables, G.D.T. Spiller, and M. Hanbucken, Nucleation and Growth of Thin Films. Rep. Prog. Phys 47, 399 (1984).

    Article  Google Scholar 

  27. J.A. Venables, R. Persaud, F.L. Metcalfe, and M. Azim, Rate and Diffusion Analyses of Surface Processes. J. Phys. Chem. Solids 55, 955 (1994).

    Article  CAS  Google Scholar 

  28. M. Hata, A. Watanabe, and T. Isu, Surface Diffusion Length Observed by In Situ Scanning Microprobe Reflection High-Energy Electron Diffraction. J. Cryst. Growth 111, 83 (1991).

    Article  CAS  Google Scholar 

  29. A. Raab and G. Springholz, Oswald Ripening and Shape Transitions of Self-Assembled PbSe Quantum Dots on PbTe(111) During Annealing. Appl. Phys. Lett. 77, 2991 (2000).

    Article  CAS  Google Scholar 

  30. Ch. Heyn, A. Stemmann, A. Schramm, H. Welsch, and W. Hansen, Regimes of GaAs Quantum Dot Self-Assembly by Droplet Epitaxy. Phys. Rev. B 76, 075317 (2007).

    Article  Google Scholar 

  31. F. Liu, Self-Assembly of Three-Dimensional Metal Islands: Nonstrained Versus Strained Islands. Phys. Rev. Lett 89, 246105 (2002).

    Article  Google Scholar 

  32. K.O. Ng and D. Vanderbilt, Stability of Periodic Domain Structures in a two-Dimensional Dipolar Model. Phys. Rev. B 52, 2177 (1995).

    Article  CAS  Google Scholar 

  33. V.P. LaBella, H. Yang, D.W. Bullock, P.M. Thibado, K. Peter, and S. Matthias, Atomic Structure of the GaAs(001)-(2*4) Surface Resolved Using Scanning Tunneling Microscopy and First-Principles Theory. Phys. Rev. Lett 83, 2989 (1999).

    Article  CAS  Google Scholar 

  34. S. Adorno, S. Bietti, and S. Sanguinetti, Annealing Induced Anisotropy in GaAs/AlGaAs Quantum Dots Grown by Droplet Epitaxy. J. Cryst. Growth 378, 515–518 (2013).

    Article  CAS  Google Scholar 

  35. A. Kley, P. Ruggerone, and M. Scheffler, Novel Diffusion Mechanism on the GaAs(001) Surface: The Role of Adatom-Dimer Interaction. Phys. Rev. Lett 79, 5278 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Project supported by the National Natural Science Foundation of China (Grant No. 62065003), the Guizhou Provincial Science and Technology Foundation (Grant No. QKH-[2020]1Y271), University Youth Science and Technology Talent Growth Project of Guizhou Province (Grant No. QJHKY-[2022]141), and Guizhou University Talent Introduction Fund (GDRJH-[2021]86)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Jiang, C., Huang, Y. et al. Mechanism of Aluminum Droplet Nucleation and Ripening on GaAs(001) Surface by Molecular Beam Epitaxy. J. Electron. Mater. 52, 463–470 (2023). https://doi.org/10.1007/s11664-022-10012-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10012-2

Keywords

Navigation