Nano Research

, Volume 3, Issue 7, pp 481–489 | Cite as

Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells

Open Access
Research Article

Abstract

We demonstrate a simple and efficient biosynthesis method to prepare easily harvested biocompatible cadmium telluride (CdTe) quantum dots (QDs) with tunable fluorescence emission using yeast cells. Ultraviolet-visible (UV-vis) spectroscopy, photoluminescence (PL) spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM) confirm that the CdTe QDs are formed via an extracellular growth and subsequent endocytosis pathway and have size-tunable optical properties with fluorescence emission from 490 to 560 nm and a cubic zinc blende structure with good crystallinity. In particular, the CdTe QDs with uniform size (2-3.6 nm) are protein-capped, which makes them highly soluble in water, and in situ bio-imaging in yeast cells indicates that the biosynthesized QDs have good biocompatibility. This work provides an economic and environmentally friendly approach to synthesize highly fluorescent biocompatible CdTe QDs for bio-imaging and bio-labeling applications.

Keywords

Cadmium telluride (CdTe) quantum dots biosynthesis biocompatible in situ bio-imaging 

Supplementary material

12274_2010_8_MOESM1_ESM.pdf (677 kb)
Supplementary material, approximately 340 KB.

References

  1. [1]
    Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 1996, 100, 13226–13239.CrossRefGoogle Scholar
  2. [2]
    Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.CrossRefADSGoogle Scholar
  3. [3]
    Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.CrossRefGoogle Scholar
  4. [4]
    Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Zheng, Y. G.; Yang, Z. C.; Ying, J. Y. Aqueous synthesis of glutathione-capped ZnSe and Zn1-xCdxSe alloyed quantum dots. Adv. Mater. 2007, 19, 1475–1479.CrossRefGoogle Scholar
  6. [6]
    Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 2002, 295, 2425–2427.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Gaponik, N. P.; Talapin, D. V.; Rogach, A. L. A light-emitting device based on a CdTe nanocrystal/polyaniline composite. Phys. Chem. Chem. Phys. 1999, 1, 1787–1789.CrossRefGoogle Scholar
  8. [8]
    Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.CrossRefPubMedADSGoogle Scholar
  10. [10]
    Mamedova, N. N.; Kotov, N. A.; Rogach, A. L.; Studer, J. Albumin-CdTe nanoparticle bioconjugates: Preparation, structure, and interunit energy transfer with antenna effect. Nano Lett. 2001, 1, 281–286.CrossRefADSGoogle Scholar
  11. [11]
    Chen, W.; Grouquist, D.; Roark, J. Voltage tunable electroluminescence of CdTe nanoparticle light-emitting diodes. J. Nanosci. Nanotech. 2002, 2, 47–53.CrossRefGoogle Scholar
  12. [12]
    Zhang, H.; Cui, Z. C.; Wang, Y.; Zhang, K.; Ji, X. L.; Lu, C. L.; Yang, B.; Gao, M. Y. From water-soluble CdTe nanocrystals to fluorescent nanocrystal-polymer transparent composites using polymerizable surfactants. Adv. Mater. 2003, 15, 777–780.CrossRefGoogle Scholar
  13. [13]
    Ma, J.; Chen, J. Y.; Guo, J.; Wang, C. C.; Yang, W. L.; Xu, L.; Wang, P. N. Photostability of thiol-capped CdTe quantum dots in living cells: The effect of photo-oxidation. Nanotechnology 2006, 17, 2083–2089.CrossRefADSGoogle Scholar
  14. [14]
    Peng, Z. A.; Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183–184.CrossRefPubMedGoogle Scholar
  15. [15]
    Talapin, D. V.; Haubold, S.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. A novel organometallic synthesis of highly luminescent CdTe nanocrystals. J. Phys. Chem. B 2001, 105, 2260–2263.CrossRefGoogle Scholar
  16. [16]
    Rogach, A. L.; Katsikas, L.; Kornowski, A.; Su, D. S.; Eychmuller, A.; Weller, H. Synthesis and characterization of thiol-stabilized CdTe nanocrystals. Ber. Bunsenges. Phys. Chem. 1996, 100, 1772–1778.Google Scholar
  17. [17]
    Zhang, H.; Wang, L. P.; Xiong, H. M.; Hu, L. H.; Yang, B.; Li, W. Hydrothermal synthesis for high-quality CdTe nanocrystals. Adv. Mater. 2003, 15, 1712–1715.CrossRefGoogle Scholar
  18. [18]
    Bao, H. F.; Wang, E. K.; Dong, S. J. One-pot synthesis of CdTe nanocrystals and shape control of luminescent CdTe-cystine nanocomposites. Small 2006, 2, 476–480.CrossRefPubMedGoogle Scholar
  19. [19]
    Bao, H. F.; Cui, X. Q.; Li, C. M.; Zang, J. F. Shape-controlled assembly of luminescent dumbbell-like CdTe-cystine nanocomposites. Nanotechnology 2007, 18, 455701.CrossRefADSGoogle Scholar
  20. [20]
    Dahl, J. A.; Maddux, B. L. S.; Hutchison, J. E. Toward greener nanosynthesis. Chem. Rev. 2007, 107, 2228–2269.CrossRefPubMedGoogle Scholar
  21. [21]
    Ahmad, A.; Mukherjee, P.; Mandal, D.; Senapati, S.; Khan, M. I.; Kumar, R.; Sastry, M. Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J. Am. Chem. Soc. 2002, 124, 12108–12109.CrossRefPubMedGoogle Scholar
  22. [22]
    Kowshik, M.; Deshmukh, N.; Vogel, W.; Urban, J.; Kulkarni, S. K.; Paknikar, K. M. Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol. Bioeng. 2002, 78, 583–588.CrossRefPubMedGoogle Scholar
  23. [23]
    Kowshik, M.; Vogel, W.; Urban, J.; Kulkarni, S. K.; Paknikar, K. M. Microbial synthesis of semiconductor PbS nanocrystallites. Adv. Mater. 2002, 14, 815–818.CrossRefGoogle Scholar
  24. [24]
    Bai, H. J.; Zhang, Z. M.; Gong, J. Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnol. Lett. 2006, 28, 1135–1139.CrossRefPubMedGoogle Scholar
  25. [25]
    Sweeney, R. Y.; Mao, C. B.; Gao, X. X.; Burt, J. L.; Belcher, A. M.; Georgiou, G.; Iverson, B. L. Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem. Biol. 2004, 11, 1553–1559.CrossRefPubMedGoogle Scholar
  26. [26]
    Kang, S. H.; Bozhilov, K. N.; Myung, N. V.; Mulchandani, A.; Chen, W. Microbial synthesis of CdS nanocrystals in genetically engineered E. coli. Angew. Chem. Int. Ed. 2008, 47, 5186–5189.CrossRefGoogle Scholar
  27. [27]
    Cui, R.; Liu, H. H.; Xie, H. Y.; Zhang, Z. L.; Yang, Y. R.; Pang, D. W.; Xie, Z. X.; Chen, B. B.; Hu, B.; Shen, P. Living yeast cells as a controllable biosynthesizer for fluorescent quantum dots. Adv. Funct. Mater. 2009, 19, 2359–2364.CrossRefGoogle Scholar
  28. [28]
    Bao, H. F.; Lu, Z. S.; Cui, X. Q.; Qao, Y.; Guo, J.; Anderson, J. M.; Li, C. M. Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater., in press, DOI: 10.1016/j.actbio.2010.03.030.Google Scholar
  29. [29]
    Gao, M. Y.; Kirstein, S.; Mohwald, H.; Rögach, A. L.; Kornowski, A.; Eychmüller, A.; Weller, H. Strongly photoluminescent CdTe nanocrystals by proper surface modification. J. Phys. Chem. B 1998, 102, 8360–8363.CrossRefGoogle Scholar
  30. [30]
    Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.CrossRefGoogle Scholar
  31. [31]
    Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; Kornowski, A.; Eychmuller, A.; Weller, H. Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes. J. Phys. Chem. B 2002, 106, 7177–7185.CrossRefGoogle Scholar
  32. [32]
    Vido, K.; Spector, D.; Lagniel, G.; Lopez, S.; Toledano, M. B.; Labarre, J. A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J. Biol. Chem. 2001, 276, 8469–8474.CrossRefPubMedGoogle Scholar
  33. [33]
    Massardo, D. R.; Pontieri, P.; Maddaluno, L.; De Stefano, M.; Alifano, P.; Del Giudice, L. Effects of tellurite on growth of Saccharomyces cerevisiae. BioMetals 2009, 22, 1089–1094.CrossRefPubMedGoogle Scholar
  34. [34]
    Kloepfer, J. A.; Mielke, R. E.; Nadeau, J. L. Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Appl. Environ. Microb. 2005, 71, 2548–2557.CrossRefGoogle Scholar
  35. [35]
    Xu, Z. P.; Zeng, Q. H.; Lu, G. Q.; Yu, A. B. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci. 2006, 61, 1027–1040.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Haifeng Bao
    • 1
  • Na Hao
    • 1
  • Yunxia Yang
    • 1
  • Dongyuan Zhao
    • 1
  1. 1.Department of Chemical EngineeringMonash UniversityClaytonAustralia

Personalised recommendations