Nano Research

, Volume 3, Issue 6, pp 423–428 | Cite as

Rapid recognition of isomers of monochlorobiphenyls at trace levels by surface-enhanced Raman scattering using Ag nanorods as a substrate

  • Qin Zhou
  • Ye Yang
  • Jie Ni
  • Zhengcao Li
  • Zhengjun Zhang
Open Access
Research Article

Abstract

Isomers and homologues of organic pollutants are hard to distinguish-especially in trace amounts-due to the similarities in their physical and chemical properties. We report here that by identifying the Raman characteristics of isomers of monochlorobiphenyls, these compounds can be recognized, even at trace levels, by using the surface-enhance Raman scattering method with silver nanorods as a substrate. When dissolved in acetone, 2-, 3-, and 4-chlorobiphenyls were detected at a concentration of 10−8 mol/L, at which their characteristic Raman peaks were visible. This study may provide a fast, simple, and sensitive method for the detection and recognition of organic pollutants such as polychlorinated biphenyls.

Keywords

Recognition isomer chlorobiphenyl trace levels SERS 

References

  1. [1]
    Ross, G. The public health implications of polychlorinated biphenyls (PCBs) in the environment. Ecotoxic. Environ. Safe. 2004, 59, 275–291.CrossRefGoogle Scholar
  2. [2]
    Cicchetti, D. V.; Kaufman, A. S.; Sparrow, S. S. The relationship between prenatal and postnatal exposure to polychlorinated biphenyls (PCBs) and cognitive, neuropsychological and behavioral deficits: A critical appraisal, Psychology in the Schools 2004, 41, 589–624.CrossRefGoogle Scholar
  3. [3]
    Ohtsubo, Y.; Kudo, T.; Tsuda, M.; Nagata, Y. Strategies for bioremediation of polychlorinated biphenyls. Appl. Microbiol. Biotechnol. 2004, 65, 250–258.CrossRefPubMedGoogle Scholar
  4. [4]
    Pitarch, E.; Serrano, R.; López, F. J.; Hernández, F. Rapid multiresidue determination of organochlorine and organophosphorus compounds in human serum by solid-phase extraction and gas chromatography coupled to tandem mass spectrometry. Anal. Bioanal. Chem. 2003, 376, 189–197PubMedGoogle Scholar
  5. [5]
    Namiesnik, J.; Zygmunt, B. Selected concentration techniques for gas chromatographic analysis of environmental samples. Chromatographia 2002, 56, S9–S18CrossRefGoogle Scholar
  6. [6]
    Hong, J. E.; Pyo, H.; Park, S. -J.; Lee, W. Determination of hydroxy-PCBs in urine by gas chromatography/mass spectrometry with solid-phase extraction and derivatization. Anal. Chim. Acta 2005, 531, 249–256.CrossRefGoogle Scholar
  7. [7]
    Barra, R.; Cisternas, M.; Suarez, C.; Araneda, A.; Pinones, O.; Popp, P. PCBs and HCHs in a salt-marsh sediment record from South-Central Chile: Use of tsunami signatures and Cs-137 fallout as temporal markers. Chemosphere 2004, 55, 965–972CrossRefPubMedGoogle Scholar
  8. [8]
    Chu, H. Y. V.; Liu, Y. J.; Huang, Y. W.; Zhao, Y. P. A high sensitive fiber SERS probe based on silver nanorod arrays. Opt. Express 2007, 15, 12230–12239.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Sun, X. Z.; Lin, L. H.; Li, Z. C.; Zhang, Z. J.; Feng, J. Y. Novel Ag-Cu substrates for surface-enhanced Raman scattering. Mater. Lett. 2009, 63, 2306–2308.CrossRefGoogle Scholar
  10. [10]
    Isola, N. R.; Stokes, D. L.; Vo-Dinh, T. Surface enhanced Raman gene probe for HIV detection. Anal. Chem. 1998, 70, 1352–1356.CrossRefPubMedGoogle Scholar
  11. [11]
    Tripp, R. A.; Dluhy, R. A.; Zhao, Y. P. Novel nanostructures for SERS biosensing. Nano Today 2008, 3, 31–37.CrossRefGoogle Scholar
  12. [12]
    Zhao, Y. P.; Chaney, S. B.; Zhang, Z. Y. Absorbance spectra of aligned Ag nanorod arrays prepared by oblique angle deposition, J. Appl. Phys. 2006, 100, 063527.CrossRefADSGoogle Scholar
  13. [13]
    Tan, R. Z.; Agarwal, A.; Balasubramanian, N.; Kwong, D. L.; Jiang, Y.; Widjaja, E.; Garland, M. 3D arrays of SERS substrate for ultrasensitive molecular detection, Sensor. Actuat. A-Phys. 2007, 139, 36–41.CrossRefGoogle Scholar
  14. [14]
    Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 1985, 57, 783–826.CrossRefADSGoogle Scholar
  15. [15]
    Kudelski, A. Analytical applications of Raman spectroscopy. Talanta 2008, 76, 1–8.CrossRefPubMedGoogle Scholar
  16. [16]
    Vo-Dinh, T.; Houck, K.; Stokes, D. L. Surface-enhanced Raman gene probes. Anal. Chem. 1994, 66, 3379–3383CrossRefPubMedGoogle Scholar
  17. [17]
    Hering, K.; Cialla, D.; Ackermann, K.; Dorfer, T.; Moller, R,; Schneidewind, H.; Mattheis, R.; Fritzche, W.; Rosch, P.; Popp, J. SERS: A versatile tool in chemical and biochemical diagnostics. Anal. Bioanal. Chem. 2008, 390, 113–124.CrossRefPubMedGoogle Scholar
  18. [18]
    Zhang, X. Y.; Zhao, J.; Whitney, A. V.; Elam, J. W.; Van Duyne, R. P. Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J. Am. Chem. Soc. 2006, 128, 10304–10309.CrossRefPubMedGoogle Scholar
  19. [19]
    Wang, Y.; Li, Y. S.; Zhang, Z. X.; An, D. Q. Surface-enhanced Raman scattering of some water insoluble drugs in silver hydrosols. Spectrochim. Acta A 2003, 59, 589–594.CrossRefGoogle Scholar
  20. [20]
    Huang, L.; Tang, F.; Shen, J. Hu, B. X.; Meng, Q. J.; Yu, T. A simple method for measuring the SERS spectra of water-insoluble organic compounds. Vib. Spectrosc. 2001, 26, 15–22.CrossRefGoogle Scholar
  21. [21]
    Zhou, Q.; Li, Z. C.; Yang, Y.; Zhang, Z. J. Arrays of aligned, single crystalline silver nanorods for trace amount detection. J. Phys. D: Appl. Phys. 2008, 41, 152007.CrossRefADSGoogle Scholar
  22. [22]
    Fleming, G. D.; Golsio, I.; Aracena, A.; Celis, F.; Vera, L.; Koch, R.; Vallette, M. C. Theoretical surface-enhanced Raman spectra study of substituted benzenes. I. Density functional theoretical SERS modelling of benzene and benzonitrile. Spectrochim. Acta A 2008, 71, 1049–1055.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Qin Zhou
    • 1
  • Ye Yang
    • 1
  • Jie Ni
    • 1
  • Zhengcao Li
    • 1
  • Zhengjun Zhang
    • 1
  1. 1.Advanced Materials Laboratory, Department of Materials Science and EngineeringTsinghua UniversityBeijingChina

Personalised recommendations