Nano Research

, Volume 2, Issue 12, pp 911–922 | Cite as

Single-molecule kinetics of nanoparticle catalysis

Open Access
Review Article


Owing to their structural dispersion, the catalytic properties of nanoparticles are challenging to characterize in ensemble-averaged measurements. The single-molecule approach enables studying the catalysis of nanoparticles at the single-particle level with real-time single-turnover resolution. This article reviews our single-molecule fl uorescence studies of single Au-nanoparticle catalysis, focusing on the theoretical formulations for extracting quantitative reaction kinetics from the single-turnover resolution catalysis trajectories. We discuss the single-molecule kinetic formulism of the Langmuir-Hinshelwood mechanism for heterogeneous catalysis, as well as of the two-pathway model for product dissociation reactions. This formulism enables the quantitative evaluation of the heterogeneous reactivity and the differential selectivity of individual nanoparticles that are usually hidden in ensemble measurements. Extension of this formulism to single-molecule catalytic kinetics of oligomeric enzymes is also discussed.


Single-nanoparticle catalysis single-molecule fluorescence detection Langmuir Hinshelwood mechanism reactivity heterogeneity parallel reaction pathways differential selectivity 


  1. [1]
    Somorjai, G. A.; Contreras, A. M.; Montano, M.; Rioux, R. M. Clusters, surfaces, and catalysis. Proc. Natl. Acad. Sci. USA 2006, 103, 10577–10583.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 2003, 299, 1688–1691.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102.CrossRefPubMedGoogle Scholar
  4. [4]
    Heiz, U.; Landman, U. Nanocatalysis; Springer: Berlin, 2007.CrossRefGoogle Scholar
  5. [5]
    Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shapecontrolled synthesis of metal nanoparticles: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 2008, 48, 60–103.CrossRefGoogle Scholar
  6. [6]
    Tao, A. R.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.CrossRefGoogle Scholar
  7. [7]
    Grzelczak, M.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L. M. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 2008, 37, 1783–1791.CrossRefPubMedGoogle Scholar
  8. [8]
    Fan, F. -R. F.; Kwak, J.; Bard, A. J. Single molecule electrochemistry. J. Am. Chem. Soc. 1996, 118, 9669–9675.CrossRefGoogle Scholar
  9. [9]
    Fan, F. -R. F.; Bard, A. J. An electrochemical Coulomb staircase: Detection of single electron-transfer events at nanometer electrodes. Science 1997, 277, 1791–1793.CrossRefGoogle Scholar
  10. [10]
    Meier, J.; Friedrich, K. A.; Stimming, U. Novel method for the investigation of single nanoparticle reactivity. Faraday Discuss. 2002, 121, 365–372.CrossRefPubMedGoogle Scholar
  11. [11]
    Meier, J.; Schiotz, J.; Liu, P.; Norskov, J. K.; Stimming, U. Nano-scale effects in electrochemistry. Chem. Phys. Lett. 2004, 390, 440–444.CrossRefADSGoogle Scholar
  12. [12]
    Chen, S. L.; Kucernak, A. Electrocatalysis under conditions of high mass transport: Investigation of hydrogen oxidation on single submicron Pt particles supported on carbon. J. Phys. Chem. B 2004, 108, 13984–13994.CrossRefGoogle Scholar
  13. [13]
    Krapf, D.; Wu, M. -Y.; Smeets, R. M. M.; Zandbergen, H. W.; Dekker, C.; Lemay, S. G. Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm. Nano Lett. 2006, 6, 105–109.CrossRefPubMedADSGoogle Scholar
  14. [14]
    Novo, C.; Funston, A. M.; Mulvaney, P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat. Nanotechnol. 2008, 3, 598–602.CrossRefPubMedGoogle Scholar
  15. [15]
    Xu, W.; Kong, J. S.; Yeh, Y. -T. E.; Chen, P. Singlemolecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nat. Mater. 2008, 7, 992–996.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Xu, W.; Kong, J. S.; Chen, P. Single-molecule kinetic theory of heterogeneous and enzyme catalysis. J. Phys. Chem. C 2009, 113, 2393–2404.CrossRefGoogle Scholar
  17. [17]
    Xu, W.; Kong, J. S.; Chen, P. Probing the catalytic activity and heterogeneity of Au-nanoparticles at the single-molecule level. Phys. Chem. Chem. Phys. 2009, 11, 2767–2778.CrossRefPubMedGoogle Scholar
  18. [18]
    Chen, P.; Xu, W.; Zhou, X. C.; Panda, D.; Kalininskiy, A. Single-nanoparticle catalysis at single-turnover resolution. Chem. Phys. Lett. 2009, 470, 151–157.CrossRefADSGoogle Scholar
  19. [19]
    Edman, L.; Földes-Papp, Z.; Wennmalm, S.; Rigler, R. The fluctuating enzyme: A single molecule approach. Chem. Phys. 1999, 247, 11–22.CrossRefADSGoogle Scholar
  20. [20]
    Velonia, K.; Flomenbom, O.; Loos, D.; Masuo, S.; Cotlet, M.; Engelborghs, Y.; Hofkens, J.; Rowan, A. E.; Klafter, J.; Nolte, R. J. M.; de Schryver, F. C. Single-enzyme kinetics of CALB-catalyzed hydrolysis. Angew. Chem. Int. Ed. 2005, 44, 560–564.CrossRefGoogle Scholar
  21. [21]
    English, B. P.; Min, W.; van Oijen, A. M.; Lee, K. T.; Luo, G. B.; Sun, H. Y.; Cherayil, B. J.; Kou, S. C.; Xie, X. S. Everfluctuating single enzyme molecule: Michaelis Menten equation revisited. Nat. Chem. Biol. 2006, 2, 87–94.CrossRefPubMedGoogle Scholar
  22. [22]
    Smiley, R. D.; Hammes, G. G. Single molecule studies of enzyme mechanisms. Chem. Rev. 2006, 106, 3080–3094.CrossRefPubMedGoogle Scholar
  23. [23]
    Roeffaers, M. B. J.; Sels, B. F.; Uji-i, H.; De Schryver, F. C.; Jacobs, P. A.; De Vos, D. E.; Hofkens, J. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 2006, 439, 572–575.CrossRefPubMedADSGoogle Scholar
  24. [24]
    Sakamoto, M.; Tachikawa, T.; Fujitsuka, M.; Majima, T. Photoreactivity of as-fabricated Au clusters at the single-cluster level. J. Am. Chem. Soc. 2009, 131, 6–7.CrossRefPubMedGoogle Scholar
  25. [25]
    Tachikawa, T.; Majima, T. Exploring the spatial distribution and transport behavior of charge carriers in a single titania nanowire. J. Am. Chem. Soc. 2009, 131, 8485–8495.CrossRefPubMedGoogle Scholar
  26. [26]
    Satterfield, C. N. Heterogeneous catalysis in practice; McGraw-Hill Book Company: New York, 1980.Google Scholar
  27. [27]
    Xie, X. S. Single-molecule approach to dispersed kinetics and dynamic disorder: Probing conformational fluctuation and enzymatic dynamics. J. Chem. Phys. 2002, 117, 11024–11032.CrossRefADSGoogle Scholar
  28. [28]
    Lu, H. P.; Xun, L. Y.; Xie, X. S. Single-molecule enzymatic dynamics. Science 1998, 282, 1877–1882.CrossRefPubMedADSGoogle Scholar
  29. [29]
    Kou, S. C.; Cherayil, B. J.; Min, W.; English, B. P.; Xie, X. S. Single-molecule Michaelis-Menten equations. J. Phys. Chem. B 2005, 109, 19068–19081.CrossRefPubMedGoogle Scholar
  30. [30]
    Min, W.; English, B. P.; Luo, G. B.; Cherayil, B. J.; Kou, S. C.; Xie, X. S. Fluctuating enzymes: Lessons from single-molecule studies. Acc. Chem. Res. 2005, 38, 923–931.CrossRefPubMedGoogle Scholar
  31. [31]
    Min, W.; Gopich, I. V.; English, B. P.; Kou, S. C.; Xie, X. S.; Szabo, A. When does the Michaelis-Menten equation hold for fluctuating enzymes? J. Phys. Chem. B 2006, 110, 20093–20097.CrossRefPubMedGoogle Scholar
  32. [32]
    Xie, S. N. Single-molecule approach to enzymology. Single Mol. 2001, 2, 229–236.CrossRefADSGoogle Scholar
  33. [33]
    Cao, J. S. Event-averaged measurements of single-molecule kinetics. Chem. Phys. Lett. 2000, 327, 38–44.CrossRefADSGoogle Scholar
  34. [34]
    Cao, J. S. Single molecule waiting time distribution functions in quantum processes. J. Chem. Phys. 2001, 114, 5137–5140.CrossRefADSGoogle Scholar
  35. [35]
    Witkoskie, J. B.; Cao, J. S. Single molecule kinetics. I. Theoretical analysis of indicators. J. Chem. Phys. 2004, 121, 6361–6372.CrossRefPubMedADSGoogle Scholar
  36. [36]
    Qian, H.; Elson, E. L. Single-molecule enzymology: Stochastic Michaelis-Menten kinetics. Biophys. Chem. 2002, 101–102, 565–576.CrossRefPubMedGoogle Scholar
  37. [37]
    Gopich, I. V.; Szabo, A. Theory of the statistics of kinetic transitions with application to single-molecule enzyme catalysis. J. Chem. Phys. 2006, 124, 154712.CrossRefPubMedADSGoogle Scholar
  38. [38]
    Xue, X.; Liu, F.; Ou-Yang, Z. -C. Single molecule Michaelis-Menten equation beyond quasistatic disorder. Phys. Rev. E 2006, 74, 030902.CrossRefADSGoogle Scholar
  39. [39]
    Chaudhury, S.; Cherayil, B. J. Dynamic disorder in single-molecule Michaelis-Menten kinetics: The reaction-diffusion formalism in the Wilemski Fixman approximation. J. Chem. Phys. 2007, 127, 105103.CrossRefPubMedADSGoogle Scholar
  40. [40]
    Zhou, Y. J.; Zhuang, X. W. Kinetic analysis of sequential multistep reactions. J. Phys. Chem. B 2007, 111, 13600–13610.CrossRefPubMedGoogle Scholar
  41. [41]
    Edman, L.; Rigler, R. Memory landscapes of single-enzyme molecules. Proc. Natl. Acad. Sci. USA 2000, 97, 8266–8271.CrossRefPubMedADSGoogle Scholar
  42. [42]
    Flomenbom, O.; Velonia, K.; Masuo, S.; Loos, D.; Cotlet, M.; Engelborghs, Y.; Hofkens, J.; Rowan, A. E.; Nolte, R. J. M.; van der Auweraer, M.; de Schryver, F. C.; Klafter, J. Stretched exponential decay and correlations in the catalytic activity of fluctuating single lipase molecules. Proc. Natl. Acad. Sci. USA 2005, 102, 2368–2372.CrossRefPubMedADSGoogle Scholar
  43. [43]
    Antikainen, N. M.; Smiley, R. D.; Benkovic, S. J.; Hammes, G. G. Conformation coupled enzyme catalysis: Single-molecule and transient kinetics investigation of dihydrofolate reductase. Biochemistry 2005, 44, 16835–16843.CrossRefPubMedGoogle Scholar
  44. [44]
    Gorris, H. H.; Rissin, D. M.; Walt, D. R. Stochastic inhibitor release and binding from single-enzyme molecules. Proc. Natl. Acad. Sci. USA 2007, 104, 17680–17685.CrossRefPubMedADSGoogle Scholar
  45. [45]
    Shi, J.; Dertouzos, J.; Gafni, A.; Steel, D.; Palfey, B. A. Single-molecule kinetics reveals signatures of half-sites reactivity in dihydroorotate dehydrogenase A catalysis. Proc. Natl. Acad. Sci. USA 2006, 103, 5775–5780.CrossRefPubMedADSGoogle Scholar
  46. [46]
    Zhang, Z. Q.; Rajagopalan, P. T. R.; Selzer, T.; Benkovic, S. J.; Hammes, G. G. Single-molecule and transient kinetics investigation of the interaction of dihydrofolate reductase with NADPH and dihydrofolate. Proc. Natl. Acad. Sci. USA 2004, 101, 2764–2769.CrossRefPubMedADSGoogle Scholar
  47. [47]
    Bagshaw, C. R.; Conibear, P. B. Single molecule enzyme kinetics: Application to myosin atpases. Biochem. Soc. Trans. 1999, 27, 33–37.PubMedGoogle Scholar
  48. [48]
    Paige, M.; Fromm, D. P.; Moerner, W. E. Biomolecular applications of single-molecule measurements: Kinetics and dynamics of a single-enzyme reaction. Proc. Soc. Photo-Opt. Instrum. Eng. 2002, 4634, 92–103.Google Scholar
  49. [49]
    Fersht, A. Structure and mechanism in protein science: A guide to enzyme catalysis and protein folding; W. H. Freeman and Company: New York, 1998.Google Scholar
  50. [50]
    van Oijen, A. M.; Blainey, P. C.; Crampton, D. J.; Richardson, C. C.; Ellenberger, T.; Xie, X. S. Single-molecule kinetics of λ exonuclease reveal base dependence and dynamic disorder. Science 2003, 301, 1235–1238.CrossRefPubMedADSGoogle Scholar
  51. [51]
    de Cremer, G.; Roeffaers, M. B. J.; Baruah, M.; Sliwa, M.; Sels, B. F.; Hofkens, J.; De Vos, D. E. Dynamic disorder and stepwise deactivation in a chymotrypsin catalyzed hydrolysis reaction. J. Am. Chem. Soc. 2007, 129, 15458–15459.CrossRefPubMedGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical BiologyCornell UniversityIthacaUSA

Personalised recommendations