Skip to main content

Part of the book series: Springer Handbooks ((SHB))

  • 2835 Accesses

Abstract

Heterogeneous catalysts exhibit intrinsic heterogeneities, both structurally and compositionally. For example, the size and shape of nanoparticle catalysts often show dispersions, and could also change over time during reactions. Therefore, it is important to study heterogeneous catalysts with experimental tools that allow in situ, real-time, spatially resolved characterization of catalytic activities. Single-molecule fluorescence microscopy has recently emerged as a powerful tool with the abovementioned capabilities. In this chapter, we discuss the development and application of single-molecule fluorescence microscopy for characterizations of heterogeneous catalysts at the single-particle to subparticle level, covering topics ranging from the static/dynamic activity heterogeneities of individual catalyst particles and subparticle regions, to the scale-up ability of catalyst screening, and to the catalysis cooperativity between spatially distinct locations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ye, R., Hurlburt, T.J., Sabyrov, K., Alayoglu, S., Somorjai, G.A.: Molecular catalysis science: perspective on unifying the fields of catalysis. Proc. Natl. Acad. Sci. 113, 5159–5166 (2016)

    Article  CAS  Google Scholar 

  2. Ertl, G.: Reactions at surfaces: from atoms to complexity (nobel lecture). Angew. Chem. Int. Ed. 47, 3524–3535 (2008)

    Article  CAS  Google Scholar 

  3. Somorjai, G.A., Li, Y.: Introduction to Surface Chemistry and Catalysis. Wiley, Hoboken, New Jersey, U.S (2010)

    Google Scholar 

  4. Chen, P., Zhou, X., Andoy, N.M., Han, K.-S., Choudhary, E., Zou, N., Chen, G., Shen, H.: Spatiotemporal catalytic dynamics within single nanocatalysts revealed by single-molecule microscopy. Chem. Soc. Rev. 43, 1107–1117 (2014)

    Article  CAS  Google Scholar 

  5. De Cremer, G., Sels, B.F., De Vos, D.E., Hofkens, J., Roeffaers, M.B.J.: Fluorescence micro(spectro)scopy as a tool to study catalytic materials in action. Chem. Soc. Rev. 39, 4703–4717 (2010)

    Article  Google Scholar 

  6. Chen, T., Dong, B., Chen, K., Zhao, F., Cheng, X., Ma, C., Lee, S., Zhang, P., Kang, S.H., Ha, J.W., Xu, W., Fang, N.: Optical super-resolution imaging of surface reactions. Chem. Rev. 117, 7510–7537 (2017)

    Article  CAS  Google Scholar 

  7. Tachikawa, T., Majima, T.: Single-molecule, single-particle fluorescence imaging of TiO2-based photocatalytic reactions. Chem. Soc. Rev. 39, 4802–4819 (2010)

    Article  CAS  Google Scholar 

  8. Roeffaers, M.B.J., Sels, B.F., Uji-i, H., De Schryver, F.C., Jacobs, P.A., De Vos, D.E., Hofkens, J.: Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature. 439, 572–575 (2006)

    Article  CAS  Google Scholar 

  9. Hendriks, F.C., Mohammadian, S., Ristanović, Z., Kalirai, S., Meirer, F., Vogt, E.T.C., Bruijnincx, P.C.A., Gerritsen, H.C., Weckhuysen, B.M.: Integrated transmission electron and single-molecule fluorescence microscopy correlates reactivity with ultrastructure in a single catalyst particle. Angew. Chem. Int. Ed. 57, 257–261 (2018)

    Article  CAS  Google Scholar 

  10. Xu, W., Kong, J.S., Yeh, Y.-T.E., Chen, P.: Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nat. Mater. 7, 992 (2008)

    Article  CAS  Google Scholar 

  11. Goldsmith, B.R., Peters, B., Johnson, J.K., Gates, B.C., Scott, S.L.: Beyond ordered materials: understanding catalytic sites on amorphous solids. ACS Catal. 7, 7543–7557 (2017)

    Article  CAS  Google Scholar 

  12. Moerner, W.E., Fromm, D.P.: Methods of single-molecule fluorescence spectroscopy and microscopy. Rev. Sci. Instrum. 74, 3597–3619 (2003)

    Article  CAS  Google Scholar 

  13. Pawley, J.: Handbook of Biological Confocal Microscopy. Springer Science & Business Media, New York, NY, U.S (2010)

    Google Scholar 

  14. Lakowicz, J.R.: Instrumentation for fluorescence spectroscopy. In: Principles of Fluorescence Spectroscopy, pp. 25–61. Springer, New York, NY, U.S (1999)

    Google Scholar 

  15. Hesari, M., Mao, X., Chen, P.: Charge carrier activity on single-particle photo(electro)catalysts: toward function in solar energy conversion. J. Am. Chem. Soc. 140, 6729–6740 (2018)

    Article  CAS  Google Scholar 

  16. Ye, R., Mao, X., Sun, X., Chen, P.: Analogy between enzyme and nanoparticle catalysis: a single-molecule perspective. ACS Catal. 9, 1985–1992 (2019)

    Article  CAS  Google Scholar 

  17. Xu, W., Kong, J.S., Chen, P.: Probing the catalytic activity and heterogeneity of Au-nanoparticles at the single-molecule level. Phys. Chem. Chem. Phys. 11, 2767–2778 (2009)

    Article  CAS  Google Scholar 

  18. Avanesian, T., Dai, S., Kale, M.J., Graham, G.W., Pan, X., Christopher, P.: Quantitative and atomic-scale view of CO-induced Pt nanoparticle surface reconstruction at saturation coverage via DFT calculations coupled with in situ TEM and IR. J. Am. Chem. Soc. 139, 4551–4558 (2017)

    Article  CAS  Google Scholar 

  19. Hansen, P.L., Wagner, J.B., Helveg, S., Rostrup-Nielsen, J.R., Clausen, B.S., Topsøe, H.: Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science. 295, 2053–2055 (2002)

    Article  CAS  Google Scholar 

  20. Nolte, P., Stierle, A., Jin-Phillipp, N.Y., Kasper, N., Schulli, T.U., Dosch, H.: Shape changes of supported Rh nanoparticles during oxidation and reduction cycles. Science. 321, 1654–1658 (2008)

    Article  CAS  Google Scholar 

  21. Dou, J., Sun, Z., Opalade, A.A., Wang, N., Fu, W., Tao, F.: Operando chemistry of catalyst surfaces during catalysis. Chem. Soc. Rev. 46, 2001–2027 (2017)

    Article  CAS  Google Scholar 

  22. Zhou, X., Xu, W., Liu, G., Panda, D., Chen, P.: Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. J. Am. Chem. Soc. 132, 138–146 (2010)

    Article  CAS  Google Scholar 

  23. Han, K.S., Liu, G., Zhou, X., Medina, R.E., Chen, P.: How does a single Pt nanocatalyst behave in two different reactions? A single-molecule study. Nano Lett. 12, 1253–1259 (2012)

    Article  CAS  Google Scholar 

  24. Sambur, J.B., Chen, P.: Approaches to single-nanoparticle catalysis. Annu. Rev. Phys. Chem. 65(65), 395–422 (2014)

    Article  CAS  Google Scholar 

  25. Andoy, N.M., Zhou, X.C., Choudhary, E., Shen, H., Liu, G.K., Chen, P.: Single-molecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2D nanocrystals. J. Am. Chem. Soc. 135, 1845–1852 (2013)

    Article  CAS  Google Scholar 

  26. Gilroy, K.D., Ruditskiy, A., Peng, H.C., Qin, D., Xia, Y.N.: Bimetallic nanocrystals: syntheses, properties, and applications. Chem. Rev. 116, 10414–10472 (2016)

    Article  CAS  Google Scholar 

  27. Chen, G.Q., Zou, N.M., Chen, B., Sambur, J.B., Choudhary, E., Chen, P.: Bimetallic effect of single nanocatalysts visualized by super-resolution catalysis imaging. ACS Cent. Sci. 3, 1189–1197 (2017)

    Article  CAS  Google Scholar 

  28. Zou, N.M., Chen, G.Q., Mao, X.W., Shen, H., Choudhary, E., Zhou, X.C., Chen, P.: Imaging catalytic hotspots on single plasmonic nanostructures via correlated super-resolution and electron microscopy. ACS Nano. 12, 5570–5579 (2018)

    Article  CAS  Google Scholar 

  29. Zhou, X.C., Choudhary, E., Andoy, N.M., Zou, N.M., Chen, P.: Scalable parallel screening of catalyst activity at the single-particle level and subdiffraction resolution. ACS Catal. 3, 1448–1453 (2013)

    Article  CAS  Google Scholar 

  30. Mao, X., Liu, C., Hesari, M., Zou, N., Chen, P.: Super-resolution imaging of nonfluorescent reactions via competition. Nat. Chem. 11, 687 (2019)

    Article  CAS  Google Scholar 

  31. Zou, N.M., Zhou, X.C., Chen, G.Q., Andoy, N.M., Jung, W., Liu, G.K., Chen, P.: Cooperative communication within and between single nanocatalysts. Nat. Chem. 10, 607–614 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the following agencies that supported our research in the general area of single-molecule single-particle catalysis: Army Research Office (grant no. W911NF-17-1-0590 and. W911NF-18-1-0217), and the US Department of Energy, Office of Science, Basic Energy Sciences, Catalysis Science Program (award no. DE-SC0004911, and as part of the Center for Alkaline-based Energy Solutions (CABES), an Energy Frontier Research Center, award no. DE-SC0019445).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mao, X., Ye, R., Chen, P. (2023). Fluorescence Microscopy. In: Wachs, I.E., Bañares, M.A. (eds) Springer Handbook of Advanced Catalyst Characterization. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-031-07125-6_13

Download citation

Publish with us

Policies and ethics