Nano Research

, 2:818 | Cite as

Effect of the laser heating of nanotube nuclei on the nanotube type population

  • Pavel Nikolaev
  • William Holmes
  • Edward Sosa
  • Peter Boul
  • Sivaram Arepalli
Open Access
Research Article


Many potential applications of carbon nanotubes are expected to benefit from the availability of single-walled carbon nanotube materials enriched in metallic species, and specifically armchair nanotubes. The present work focuses on the modification of the pulsed laser vaporization (PLV) technique to selectively produce certain carbon nanotube structures. Nanotube nuclei were “warmed-up” with an additional laser pulse, timed to coincide approximately with the nucleation event. The effect of the second laser on the carbon vapor temperature was studied by emission spectroscopy. Nanotube type populations with and without warm-up were compared by means of absorption, photoluminescence, and Raman spectroscopy. It was found that the warm-up of nanotube nuclei with a laser pulse has a noticeable, albeit small, effect on the nanotube population. The intensity of spectral features associated with (9,7) nanotube and its large chiral angle neighbors increased, while small chiral angle nanotubes decreased, with exception of the (15,0) tube. This experiment demonstrates that nanotube population during PLV synthesis can be manipulated in a controlled fashion.


Nanotube synthesis pulsed laser vaporization nanotube population 


  1. [1]
    Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. Carbon Nanotubes: Synthesis, Structure, Properties and Applications. Topics in Applied Physics; Springer-Verlag: Heidelberg, 2001; Vol. 80.Google Scholar
  2. [2]
    Anantram, M. P.; Leonard, F. Physics of carbon nanotube electronic devices. Rep. Prog. Phys. 2006, 69, 507–561.CrossRefADSGoogle Scholar
  3. [3]
    Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Thostenson, E. T.; Ren, Z. F.; Chou, T. W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912.CrossRefGoogle Scholar
  5. [5]
    Kaushik, B. K.; Goel, S.; Rauthan, G. Future VLSI interconnects: Optical fiber or carbon nanotube—A review. Microelectron. Int. 2007, 24, 53–63.CrossRefGoogle Scholar
  6. [6]
    Mahar, B.; Laslau, C.; Yip, R.; Sun, Y. Development of carbon nanotube-based sensors—A review. IEEE Sens. J. 2007, 7, 266–284.CrossRefGoogle Scholar
  7. [7]
    Charlier, J. C.; Blase, X.; Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 2007, 79, 677–732.CrossRefADSGoogle Scholar
  8. [8]
    Hersam, M. C. Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 2008, 3, 387–394.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Lolli, G.; Zhang, L.; Balzano, L.; Sakulchaicharoen, N.; Tan, Y.; Resasco, D. E. Tailoring (n,m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalysts. J. Phys. Chem. B 2006, 110, 2108–2115.CrossRefPubMedGoogle Scholar
  10. [10]
    Miyauchi, Y.; Chiashi, S.; Murakami, Y.; Hayashida, Y.; Maruyama, S. Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol. Chem. Phys. Lett. 2004, 387, 198–203.CrossRefADSGoogle Scholar
  11. [11]
    Suzuki, S.; Asai, N.; Kataura, H.; Achiba, Y. Formation of single-wall carbon nanotubes in Ar and nitrogen gas atmosphere by using laser furnace technique. Eur. Phys. J. D 2007, 43, 143–146.CrossRefADSGoogle Scholar
  12. [12]
    Nikolaev, P.; Holmes, W.; Sosa, E.; Boul, P.; Arepalli, S.; Yowell, L. Effect of vaporization temperature on the diameter and chiral angle distributions of single-wall carbon nanotubes. J. Nanosci. Nanotech., in press.Google Scholar
  13. [13]
    Thess, A.; Lee, R.; Nikolaev, P.; Dai, H. J.; Petit, P.; Robert, J.; Xu, C. H.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G. et. al. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273, 483–487.CrossRefPubMedADSGoogle Scholar
  14. [14]
    Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D. T.; Smalley, R. E. Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 1995, 243, 49–54.CrossRefGoogle Scholar
  15. [15]
    Cowley, J. M.; Nikolaev, P.; Thess, A.; Smalley, R. E. Electron nano-diffraction study of carbon single-walled nanotube ropes. Chem. Phys. Lett. 1997, 265, 379–384.CrossRefADSGoogle Scholar
  16. [16]
    Jiang, H.; Nasibulin, A. G.; Brown, D. P.; Kauppinen, E. I. Unambiguous atomic structural determination of single-walled carbon nanotubes by electron diffraction. Carbon 2007, 45, 662–667.CrossRefGoogle Scholar
  17. [17]
    Jiang, H.; Brown, D. P.; Nikolaev, P.; Nasibulin, A. G.; Kauppinen, E. I. Determination of helicities in unidirectional assemblies of graphitic or graphitic-like tubular structures. Appl. Phys. Lett. 2008, 93, 141903.CrossRefADSGoogle Scholar
  18. [18]
    Nikolaev, P. Gas Phase Production of Single Wall Carbon Nanotubes. Ph. D. thesis, Rice University, Houston, TX, 2000.Google Scholar
  19. [19]
    Lee, Y. H.; Kim, S. G.; Tománek, D. Catalytic growth of single-wall carbon nanotubes: An ab initio study. Phys. Rev. Lett. 1997, 78, 2393–2396.CrossRefADSGoogle Scholar
  20. [20]
    Arepalli, S.; Holmes, W. A.; Nikolaev, P.; Hadjiev, V. G.; Scott, C. D. A parametric study of single-wall carbon nanotube growth by laser ablation. J. Nanosci. Nanotech. 2004, 4, 762–773.CrossRefGoogle Scholar
  21. [21]
    Arepalli, S.; Scott, C. Spectral measurements in production of single-wall nanotubes by laser ablation. Chem. Phys. Lett. 1999, 302, 139–145.CrossRefADSGoogle Scholar
  22. [22]
    Arepalli, S.; Nikolaev, P.; Holmes, W.; Scott, C. D. Diagnostics of laser produced plume under carbon nanotube growth conditions. Appl. Phys. A 2000, 70, 125–133.CrossRefADSGoogle Scholar
  23. [23]
    Arepalli, S. Laser ablation process for single wall carbon nanotube production. J. Nanosci. Nanotech. 2004, 4, 317–325.CrossRefGoogle Scholar
  24. [24]
    Scott, C. D.; Arepalli, S.; Nikolaev, P.; Smalley, R. E. Growth mechanisms for single-wall carbon nanotubes in a laserablation process. Appl. Phys. A 2001, 72, 573–580.CrossRefADSGoogle Scholar
  25. [25]
    Puretzky, A. A.; Schittenhelm, H.; Fan, Xu.; Lance, M. J; Allard, L. F. Jr.; Geohegan, D. B. Investigations of single-wall carbon nanotube growth by time-restricted laser vaporization. Phys. Rev. B 2002, 65, 245425.CrossRefADSGoogle Scholar
  26. [26]
    Araujo, P. T.; Doorn, S. K.; Kilina, S.; Tretiak, S.; Einarsson, E.; Maruyama, S.; Chacham, H.; Pimenta, M. A.; Jorio, A. Third and fourth optical transitions in semiconducting carbon nanotubes. Phys. Rev. Lett. 2007, 98, 067401.CrossRefPubMedADSGoogle Scholar
  27. [27]
    Fantini, C.; Jorio, A.; Souza, M.; Strano, M. S.; Dresselhaus, M. S.; Pimenta, M. A. Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: Environment and temperature effects. Phys. Rev. Lett. 2004, 93, 147406.CrossRefPubMedADSGoogle Scholar
  28. [28]
    Weisman, R. B.; Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot. Nano Lett. 2003, 3, 1235–1238.CrossRefADSGoogle Scholar
  29. [29]
    Jiang, J.; Saito, R.; Gruneis, A.; Dresselhaus, G.; Dresselhaus, M. S. Optical absorption matrix elements in single-wall carbon nanotubes. Carbon 2004, 42, 3169–3176.CrossRefGoogle Scholar
  30. [30]
    Oyama, Y.; Saito, R.; Sato, K.; Jiang, J.; Samsonidze, Ge. G.; Gruneis, A.; Miyauchi, Y.; Maruyama, S.; Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S. Photoluminescence intensity of single-wall carbon nanotubes. Carbon 2006, 44, 873–879.CrossRefGoogle Scholar
  31. [31]
    Jiang, J.; Saito, R.; Sato, K.; Park, J. S.; Samsonidze, Ge. G.; Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S. Excitonphoton, exciton-phonon matrix elements, and resonant Raman intensity of single-wall carbon nanotubes. Phys. Rev. B 2007, 75, 035405.CrossRefADSGoogle Scholar
  32. [32]
    Tsyboulski, D. A.; Rocha, J. -D. R.; Bachilo, S. M.; Cognet, L.; Weisman, R. B. Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. Nano Lett. 2007, 7, 3080–3085.CrossRefPubMedADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Pavel Nikolaev
    • 1
  • William Holmes
    • 2
  • Edward Sosa
    • 3
  • Peter Boul
    • 3
  • Sivaram Arepalli
    • 1
  1. 1.Department of Energy ScienceSungkyunkwan UniversitySuwonKorea
  2. 2.Alan G. MacDiarmid NanoTech InstituteThe University of Texas at DallasRichardsonUSA
  3. 3.ERC Inc. / NASA Johnson Space CenterHoustonUSA

Personalised recommendations