Skip to main content
Log in

Silicon promotes the highest single-wall carbon nanotube purity in pulsed laser vaporization

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Work with a dual pulsed laser vaporization (DPLV) system built for the synthesis of single-wall carbon nanotubes (SWCNT) indicates that a key factor in early reports of material purities thought at that time to be as high as 90%, originally attributed to reaction volume confinement by a small-diameter process tube was, at least in part, due rather to an unrecognized source of silicon in those early synthesis experiments. It is demonstrated that Si enhances the product purity by spectroscopic assay of DPLV synthesized product materials produced both with and without the purposeful inclusion of a small quantity of Si along with the Co/Ni catalysts into the targets. Such enhancement of the product purity on the inclusion of Si may find useful application in other methods of SWCNT production, most directly in carbon arc and plasma torch-based syntheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, AGR, upon reasonable request.

References

  1. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, Ch. Xu, Y.H. Lee, S. Gon Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley, Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996)

    Article  ADS  Google Scholar 

  2. J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F. Rodriguez-Macias, Y.-S. Shon, T.R. Lee, D.T. Colbert, R.E. Smalley, Fullerene pipes. Science 280, 1253–1256 (1997)

    Article  ADS  Google Scholar 

  3. A.G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C.B. Huffman, F.J. Rodriguez-Macias, P.J. Boul, A.H. Lu, D. Heymann, D.T. Colbert, R.S. Lee, J.E. Fischer, A.M. Rao, P.C. Eklund, R.E. Smalley, Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl. Phys. A 67, 29–37 (1998)

    Article  ADS  Google Scholar 

  4. A.M. Rao, E. Richter, S. Bandow, B. Chase, P.C. Eklund, K.A. Williams, S. Fang, K.R. Subbaswamy, M. Menon, A. Thess, R.E. Smalley, G. Dresselhaus, M.S. Dresselhaus, Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275, 187–191 (1997)

    Article  Google Scholar 

  5. R.S. Lee, H.J. Kim, J.E. Fischer, A. Thess, R.E. Smalley, Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature 388, 255–257 (1997)

    Article  ADS  Google Scholar 

  6. S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker, Individual single-wall carbon nanotubes as quantum wires. Nature (London) 386, 474–477 (1997)

    Article  ADS  Google Scholar 

  7. J.W.G. Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature (London) 391, 59, 62 (1998)

    Google Scholar 

  8. S.J. Tans, A.R.M. Verscheuren, C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998)

    Article  ADS  Google Scholar 

  9. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, P. Avouris, Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998)

    Article  ADS  Google Scholar 

  10. M.S. Fuhrer, J. Nygrd, L. Shih, M. Forero, Y.-G. Yoon, M.S.C. Mazzoni, H.J. Choi, J. Ihm, S.G. Louie, A. Zettl, P.L. McEuen, Crossed nanotube junctions. Science 288, 494–497 (2000)

    Article  ADS  Google Scholar 

  11. R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K. Chan, J. Tersoff, Ph. Avouris, Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett. 87(256805), 1–4 (2001)

    Google Scholar 

  12. C.D. Scott, S. Arepalli, P. Nikolaev, R.E. Smalley, Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. A 72, 573–580 (2001)

    Article  ADS  Google Scholar 

  13. R.H. Lamoreaux, D.L. Hildenbrand, L. Brewer, High-temperature vaporization behavior of oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd- and Hg. J. Phys. Chem. Ref. Data 16, 419–443 (1987)

    Article  ADS  Google Scholar 

  14. B. Abolpour, R. Shamsoddini, Mechanism of reaction of silica and carbon for producing silicon carbide. Prog. React. Kinet. Mech. 45, 1–14 (2019)

    Google Scholar 

  15. F.T. Ferguson, J.A. Nuth III., Vapor pressure of silicon monoxide. J. Chem. Eng. Data 53, 2824–2832 (2008)

    Article  Google Scholar 

  16. J.M. Simmons, B.M. Nichols, M.S. Marcus, O.M. Castellini, R.J. Hamers, M.A. Eriksson, Critical oxide thickness for efficient single-walled carbon nanotube growth on silicon using thin SiO2 diffusion barriers. Small 2006(2), 902–909 (2006)

    Article  Google Scholar 

  17. B. Liu, W. Ren, L. Gao, S. Li, S. Pei, C. Liu, C. Jiang, H. Cheng, Metal-catalyst-free growth of single walled carbon nanotubes. J. Am. Chem. Soc. 131, 2082–2083 (2009)

    Article  Google Scholar 

  18. S. Huang, Q. Cai, J. Chen, Y. Qian, L. Zhang, Metal-catalyst-free growth of single-walled carbon nanotubes on substrates. J. Am. Chem. Soc. 131, 2094–2095 (2009)

    Article  Google Scholar 

  19. C.J. Unrau, R.L. Axelbaum, Gas-phase synthesis of single-walled carbon nanotubes on catalysts producing high yield. Carbon 48, 1418–1424 (2008)

    Article  Google Scholar 

  20. C.J. Unrau, V.R. Katta, R.L. Axelbaum, Characterization of diffusion flames for synthesis of single-walled carbon nanotubes. Combust. Flame 157, 1643–1648 (2010)

    Article  Google Scholar 

  21. C.J. Unrau, R.L. Axelbaum, C.S. Lo, High-yield growth of carbon nanotubes on composite Fe/Si/O nanoparticle catalysts: a car-parrinello molecular dynamics and experimental study. J. Phys. Chem. C 114, 10430–10435 (2010)

    Article  Google Scholar 

  22. M.E. Itkis, D.E. Perea, S. Niyogi, S.M. Rickard, M.A. Hamon, H. Hu, B. Zhao, R.C. Haddon, Purity evaluation of as-prepared single-walled carbon nanotube soot by use of solution-phase near-IR spectroscopy. Nano Lett. 3(3), 309–314 (2003)

    Article  ADS  Google Scholar 

  23. Measurement Issues in Single Wall Carbon Nanotubes, Ed.:S. Freiman, S. Hooker, K. Migler, S. Arepalli, Part 3, Auth. R. Haddon, M. Itkis, pp17–35, National Institute of Standards and Technology Special Publication 960–19 (2008).

  24. S. Arepalli, P. Nikolaev, W. Holmes, C.D. Scott, Diagnostics of laser-produced plume under carbon nanotube growth conditions. Appl. Phys. A Mater. Sci. Process. 70, 125 (2000)

    Article  ADS  Google Scholar 

  25. S. Arepalli, P. Nikolaev, W. Holmes, B.S. Files, Production and measurements of individual single-wall nanotubes and small ropes of carbon. Appl. Phys. Lett. 78, 1610–1612 (2001)

    Article  ADS  Google Scholar 

  26. C.T. Kingston, Z.J. Jakubek, S. Denommee, B. Simard, Efficient laser synthesis of single-walled carbon nanotubes through laser heating of the condensing vaporization plume. Carbon 42, 1657 (2004)

    Article  Google Scholar 

  27. M. Yudasaka, T. Komatsu, T. Ichihashi, S. Iijima, Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal. Chem. Phys. Lett. 278, 102–106 (1997)

    Article  ADS  Google Scholar 

  28. ASM Handbook, ASM International. Alloy Phase Diagrams, 2002.

  29. T.B. Massalski, Binary Alloy Phase Diagrams, 2nd edn. (ASM International, Materials Park, 1990)

    Google Scholar 

Download references

Acknowledgements

The authors thank Mattrix Technologies Inc. and the University of Florida for financial support.

Funding

Financial support for this work was provided by Mattrix Technologies Inc. (Grant no. AGR0001302) and by the University of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew G. Rinzler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Consent for publication was obtained for every individual person’s data included in the study.

Financial interest

Andrew Rinzler serves on the Mattrix Board of Directors (receiving no financial compensation). The University of Florida Research Foundation has filed a provisional patent on behalf of the authors for the use of Si to enhance the SWCNT purity during their synthesis in reactions where gaseous oxygen is not a necessary component.

Employment

Ramesh Jayaraman was simultaneously an employee of Mattrix Technologies Inc. and a PhD candidate in the UF Dept. of Materials Science and Engineering. This work performed in partial fulfillment of his candidacy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 598 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayaraman, R., Rinzler, A.G. Silicon promotes the highest single-wall carbon nanotube purity in pulsed laser vaporization. Appl. Phys. A 129, 533 (2023). https://doi.org/10.1007/s00339-023-06813-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06813-9

Keyword

Navigation