Nano Research

, 2:800 | Cite as

Synthesis of single-walled carbon nanotubes by induction thermal plasma

  • Keun Su Kim
  • Ala Moradian
  • Javad Mostaghimi
  • Yasaman Alinejad
  • Ali Shahverdi
  • Benoit Simard
  • Gervais Soucy
Open Access
Research Article


The production of high quality single-walled carbon nanotubes (SWCNTs) on a bulk scale has been an issue of considerable interest. Recently, it has been demonstrated that high quality SWCNTs can be continuously synthesized on large scale by using induction thermal plasma technology. In this process, the high energy density of the thermal plasma is employed to generate dense vapor-phase precursors for the synthesis of SWCNTs. With the current reactor system, a carbon soot product which contains approximately 40 wt% of SWCNTs can be continuously synthesized at the high production rate of ∼100 g/h. In this article, our recent research efforts to achieve major advances in this technology are presented. Firstly, the processing parameters involved are examined systematically in order to evaluate their individual influences on the SWCNT synthesis. Based on these results, the appropriate operating conditions of the induction thermal plasma process for an effective synthesis of SWCNTs are discussed. A characterization study has also been performed on the SWCNTs produced under the optimum processing conditions. Finally, a mathematical model of the process currently under development is described. The model will help us to better understand the synthesis of SWCNTs in the induction plasma process.


Single-walled carbon nanotubes (SWCNTs) large-scale continuous synthesis radio frequency (RF) induction thermal plasma optimization numerical modeling 

Supplementary material

12274_2009_9085_MOESM1_ESM.pdf (234 kb)
Supplementary material, approximately 233 KB.


  1. [1]
    Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998.Google Scholar
  2. [2]
    Hayamizu, Y.; Yamada, T.; Mizuno, K.; Davis, R. C.; Futaba, D. N.; Yumura, M.; Hata, K. Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers. Nat. Nanotechnol. 2008, 3, 289–294.CrossRefPubMedGoogle Scholar
  3. [3]
    Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009, 2, 85–120.CrossRefGoogle Scholar
  4. [4]
    Ci, L.; Suhr, J.; Pushparaj, V.; Zhang, X.; Ajayan, P. M. Continuous carbon nanotube reinforced composites. Nano Lett. 2008, 8, 2762–2766.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Liu, C.; Cheng, H. M. Carbon nanotubes for clean energy applications. J. Phys. D: Appl. Phys. 2005, 38, R231–R252.CrossRefADSGoogle Scholar
  6. [6]
    Mauter, M. S.; Elimelech, M. Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 2008, 42, 5843–5859.CrossRefPubMedGoogle Scholar
  7. [7]
    Kim, K. S.; Cota-Sanchez, G.; Kingston, C. T.; Imris, M.; Simard, B.; Soucy, G. Large-scale production of single-walled carbon nanotubes by induction thermal plasma. J. Phys. D: Appl. Phys. 2007, 40, 2375–2387.CrossRefADSGoogle Scholar
  8. [8]
    Ostrikov, K.; Murphy, A. B. Plasma-aided nanofabrication: Where is the cutting edge? J. Phys. D: Appl. Phys. 2007, 40, 2223–2241.CrossRefADSGoogle Scholar
  9. [9]
    Gonzalez-Aguilar, J.; Moreno, M.; Fulcheri, L. Carbon nanostructures production by gas-phase plasma processes at atmospheric pressure. J. Phys. D: Appl. Phys. 2007, 40, 2361–2374.CrossRefADSGoogle Scholar
  10. [10]
    Boulos, M. I. Thermal plasma processing. IEEE Trans. Plasma Sci. 1991, 19, 1078–1089.CrossRefADSGoogle Scholar
  11. [11]
    Boulos, M. I. The inductively coupled R.F. (radio frequency) plasma. Pure Appl. Chem. 1985, 57, 1321–1352.CrossRefGoogle Scholar
  12. [12]
    Boulos, M. I. The inductively coupled radio frequency plasma. High Temp. Mater. Proc. 1997, 1, 17–39.Google Scholar
  13. [13]
    Watanabe, T.; Notoya, T.; Ishigaki, T.; Kuwano, H.; Tanaka, H.; Moriyoshi, Y. Growth mechanism for carbon nanotubes in a plasma evaporation process. Thin Solid Films 2006, 506, 263–267.CrossRefADSGoogle Scholar
  14. [14]
    Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D. T.; Smalley, R. E. Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 1995, 243, 49–54.CrossRefGoogle Scholar
  15. [15]
    Boulos, M. I.; Fauchais, P.; Pfender, E. Thermal Plasmas, Fundamentals and Applications; Plenum: New York, 1994.Google Scholar
  16. [16]
    Lange, H.; Bystrzejewski, M.; Huczko, A. Influence of carbon structure on carbon nanotube formation and carbon arc plasma. Diamond Relat. Mater. 2006, 15, 1113–1116.CrossRefGoogle Scholar
  17. [17]
    Laplaze, D.; Alvarez, L.; Guillard, T.; Badie, J. M.; Flamant, G. Carbon nanotubes: Dynamics of synthesis processes. Carbon 2002, 40, 1621–1634.Google Scholar
  18. [18]
    Kim, K. S.; Imris, M.; Shahverdi, A.; Alinejad, Y.; Soucy, G. Single-walled carbon nanotubes prepared by largescale induction thermal plasma process: Synthesis, characterization, and purification. J. Phys. Chem. C 2009, 113, 4340–4348.CrossRefGoogle Scholar
  19. [19]
    Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 2002, 304, 2361–2366.CrossRefADSGoogle Scholar
  20. [20]
    Eswaramoorthy, M.; Sen, R.; Rao, C. N. R. A study of micropores in single-walled carbon nanotubes by the adsorption of gases and vapors. Chem. Phys. Lett. 1999, 304, 207–210.CrossRefADSGoogle Scholar
  21. [21]
    Farhat, S.; Scott, C. D. Review of the arc process modeling for fullerene and nanotube production. J. Nanosci. Nanotechnol. 2006, 6, 1189–1210.CrossRefPubMedGoogle Scholar
  22. [22]
    Brown, D. P.; Nasibulin, A. G.; Kauppinen, E. I. CFD-aerosol modeling of the effects of wall composition and inlet conditions on carbon nanotube catalyst particle activity. J. Nanosci. Nanotechnol. 2008, 8, 3803–3819.CrossRefPubMedGoogle Scholar
  23. [23]
    Moradian, A.; Mostaghimi, J.; Kim, K. S.; Soucy, G. Modeling large-scale synthesis of single-walled carbon nanotubes by induction thermal plasma. High Temp. Mater. Proc., in press.Google Scholar
  24. [24]
    Saito, Y. Nanoparticles and filled nanocapsules. Carbon 1995, 33, 979–988.CrossRefADSGoogle Scholar
  25. [25]
    Mostaghimi, J.; Boulos, M. I. Two-dimensional electromagnetic-field effects in induction plasma modeling. Plasma Chem. Plasma Process. 1989, 9, 25–44.CrossRefGoogle Scholar
  26. [26]
    Xue, S. W.; Proulx, P.; Boulos, M. I. Extended-field electromagnetic model for inductively coupled plasma. J. Phys. D: Appl. Phys. 2001, 34, 1897–1906.CrossRefADSGoogle Scholar
  27. [27]
    Proulx, P.; Mostaghimi, J.; Boulos, M. I. Heating of powders in an RF inductively coupled plasma under dense loading conditions. Plasma Chem. Plasma Process. 1987, 7, 29–52.CrossRefGoogle Scholar
  28. [28]
    Chen, X. Particle heating in a thermal plasma. Pure Appl. Chem. 1988, 60, 651–662.CrossRefGoogle Scholar
  29. [29]
    Shigeta, M.; Watanabe, T. Numerical investigation of cooling effect on platinum nanoparticle formation in inductively coupled thermal plasmas. J. Appl. Phys. 2008, 103, 074903.CrossRefADSGoogle Scholar
  30. [30]
    Boulos, M. I. Heating of powders in the fire ball of an induction plasma. IEEE Trans. Plasma Sci. 1978, 6, 93–106.CrossRefADSGoogle Scholar
  31. [31]
    Ranz, W. E.; Marshall, W. R. Evaporation from drops, Part I. Chem. Eng. Prog. 1952, 48, 141–146.Google Scholar
  32. [32]
    Ranz, W. E.; Marshall, W. R. Evaporation from drops, Part II. Chem. Eng. Prog. 1952, 48, 173–180.Google Scholar
  33. [33]
    Friedlander, S. K. Smoke, Dust and Haze, Fundamental of Aerosol Dynamics; Oxford University Press: New York, 2000.Google Scholar
  34. [34]
    Phanse, G. M.; Pratsinis, S. E. Theory for aerosol generation in laminar-flow condensers. Aerosol Sci. Technol. 1989, 11, 100–119.CrossRefGoogle Scholar
  35. [35]
    Girshick, S. L.; Chiu, C. P.; Mcmurry, P. H. Time-dependent aerosol models and homogeneous nucleation rates. Aerosol Sci. Technol. 1990, 13, 465–477.CrossRefGoogle Scholar
  36. [36]
    Bilodeau, J. F.; Proulx, P. A mathematical model for ultrafine iron powder growth in a thermal plasma. Aerosol Sci. Technol. 1996, 24, 175–189.CrossRefGoogle Scholar
  37. [37]
    Ding, F.; Bolton, K.; Rosen, A. Nucleation and growth of single-walled carbon nanotubes: A molecular dynamics study. J. Phys. Chem. B 2004, 108, 17369–17377.CrossRefGoogle Scholar
  38. [38]
    Ding, F.; Rosen, A.; Bolton, K. Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth. J. Chem. Phys. 2004, 121, 2775–2779.CrossRefPubMedADSGoogle Scholar
  39. [39]
    Roland, C.; Bernholc, J.; Brabec, C.; Nardelli, M. B.; Maiti, A. Theoretical investigations of carbon nanotube growth. Mol. Simulat. 2000, 25, 1–12.CrossRefGoogle Scholar
  40. [40]
    Celnik, M.; West, R.; Morgan, N.; Kraft, M.; Moisala, A.; Wen, J.; Green, W.; Richter, H. Modelling gas-phase synthesis of single-walled carbon nanotubes on iron catalyst particles. Carbon 2008, 46, 422–433.CrossRefGoogle Scholar
  41. [41]
    Wen, J. Z.; Celnik, M.; Richter, H.; Treska, M.; Sande, J. B. V.; Kraft, M. Modelling study of single walled carbon nanotube formation in a premixed flame. J. Mater. Chem. 2008, 18, 1582–1591.CrossRefGoogle Scholar
  42. [42]
    Moisala, A.; Nasibulin, A. G.; Kauppinen, E. I. The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes — A review. J. Phys. Condens. Matter 2003, 15, S3011–S3035.CrossRefADSGoogle Scholar
  43. [43]
    Pousse, J.; Chervy, B.; Bilodeau, J. F.; Gleizes, A. Thermodynamic and transport properties of argon/carbon and helium/carbon mixtures in fullerene synthesis. Plasma Chem. Plasma Process. 1996, 16, 605–634.CrossRefGoogle Scholar
  44. [44]
    Gale, W. F.; Totemeier, T. C. Smithells Metals Reference Book. Elsevier Butterworth-Heinemann: Oxford, 2004.Google Scholar
  45. [45]
    Nesmeyanov, A. N. Vapor Pressure of the Chemical Elements; Elsevier: New York, 1963.Google Scholar
  46. [46]
    FLUENT User’s Guide. Version 6.2, 2005.Google Scholar
  47. [47]
    Patankar, S. V. Numerical Fluid Flow and Heat Transfer; Hemisphere: New York, 1980.MATHGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Keun Su Kim
    • 1
  • Ala Moradian
    • 2
  • Javad Mostaghimi
    • 2
  • Yasaman Alinejad
    • 1
  • Ali Shahverdi
    • 1
  • Benoit Simard
    • 3
  • Gervais Soucy
    • 1
  1. 1.Department of Chemical EngineeringUniversité de SherbrookeSherbrookeCanada
  2. 2.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada
  3. 3.Steacie Institute for Molecular SciencesNational Research CouncilOttawaCanada

Personalised recommendations