Skip to main content
Log in

Effect of Plasma Ignition on the Growth Temperature Decrease of Single-Walled Carbon Nanotubes in a Plasma-Coupled Hybrid Chemical-Vapor-Deposition System

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We demonstrate the effect of plasma ignition on the growth temperature decrease of single-walled carbon nanotubes (SWNTs) by using a plasma-coupled hybrid chemical-vapor-deposition system. The horizontal reactor is divided into the plasma ignition region and the SWNT synthesis region. The plasma was generated by using an inductively-coupled system and contributed to efficient decomposition of the feedstock gas. The growth temperature for the SWNTs was suppressed to 500 C at a plasma power of 400 W with a mixture of C2H4 and H2 gases. The result of optical emission spectroscopy showed H2, Hβ, and CH lines with relatively weak intensities favorable for low-temperature growth of SWNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima and T. Ichihashi, Nature 363, 603 (1993).

    Article  ADS  Google Scholar 

  2. S. J. Tans et al., Nature 386, 474 (1997).

    Article  ADS  Google Scholar 

  3. D. Mann et al., Nano Lett. 3, 1541 (2003).

    Article  ADS  Google Scholar 

  4. M. F. L. DeVolder, S. H. Tawfick, R. H. Baughman and A. J. Hart, Science 339, 535 (2013).

    Article  ADS  Google Scholar 

  5. S. Bhaviripudi et al., ACS Nano 129, 1516 (2007).

    Google Scholar 

  6. G. H. Jeong et al., J. Am. Chem. Soc. 127, 8238 (2005).

    Article  Google Scholar 

  7. J. J. Kim, B. J. Lee, S. H. Lee and G. H. Jeong, Nanotechnology 23, 105607-1 (2012).

  8. C. Kocabas, M. Shim and J. Rogers, J. Am. Chem. Soc. 128, 4540 (2006).

    Article  Google Scholar 

  9. H. Ago, T. Ayagaki, Y. Ogawa and M. Tsuji, J. Phys. Chem. C 115, 13247 (2011).

    Article  Google Scholar 

  10. W. Mu et al., Electron. Mater. Lett. 12, 329 (2016).

    Article  ADS  Google Scholar 

  11. D. Yuan et al., Nano Lett. 8, 2576 (2008).

    Article  ADS  Google Scholar 

  12. M. M. Shulaker et al., Nature 501, 526 (2013).

    Article  ADS  Google Scholar 

  13. S. J. Kang et al., Nat. Nanotechnol. 2, 230 (2007).

    Article  ADS  Google Scholar 

  14. Q. Cao and J. Rogers, Adv. Mater. 20, 29 (2008).

    Article  Google Scholar 

  15. H. Ishida et al., Thin Solid Films 407, 26 (2002).

    Article  ADS  Google Scholar 

  16. T. Hirata et al., Appl. Phys. Lett. 83, 1119 (2003).

    Article  ADS  Google Scholar 

  17. G. H. Jeong et al., Appl. Phys. A 79, 85 (2004).

    Article  ADS  Google Scholar 

  18. T. Kato et al., Chem. Phys. Lett. 381, 422 (2003).

    Article  ADS  Google Scholar 

  19. T. Kato, R. Hatakeyama and K. Tohji, Nanotechnology 17, 2223 (2006).

    Article  ADS  Google Scholar 

  20. T. Kato and R. Hatakeyama, ACS Nano 4, 7395 (2010).

    Article  Google Scholar 

  21. B. J. Lee et al., Mater. Lett. 65, 1127 (2011).

    Article  Google Scholar 

  22. T. van der Laan, S. Kumar and K. Ostrikov, Advances in Nanodevices and Nanofabrication (CRC Press, Boca Raton, 2012).

    Google Scholar 

  23. L. V. Nang and E. T. Kim, J. Electrochem. Soc. 159, K93 (2012).

    Article  Google Scholar 

  24. A. Jorio et al., Phys. Rev. Lett. 86, 1118 (2001).

    Article  ADS  Google Scholar 

  25. R. Satio, M. S. Dresselhaus and G. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).

    MATH  Google Scholar 

  26. D. Tsyganov et al., Plasma Sources Sci. Technol. 25, 015013 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 2018R1D1A1B07048870).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goo-Hwan Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, SI., Lee, BJ. & Jeong, GH. Effect of Plasma Ignition on the Growth Temperature Decrease of Single-Walled Carbon Nanotubes in a Plasma-Coupled Hybrid Chemical-Vapor-Deposition System. J. Korean Phys. Soc. 76, 1110–1115 (2020). https://doi.org/10.3938/jkps.76.1110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.1110

Keywordss

Navigation