Nano Research

, 2:851 | Cite as

Synthesis of isotopically-labeled graphite films by cold-wall chemical vapor deposition and electronic properties of graphene obtained from such films

  • Weiwei Cai
  • Richard D. Piner
  • Yanwu Zhu
  • Xuesong Li
  • Zhenbing Tan
  • Herman Carlo Floresca
  • Changli Yang
  • Li Lu
  • M. J. Kim
  • Rodney S. Ruoff
Open Access
Research Article

Abstract

We report the synthesis of isotopically-labeled graphite films on nickel substrates by using cold-wall chemical vapor deposition (CVD). During the synthesis, carbon from 12C- and 13C-methane was deposited on, and dissolved in, a nickel foil at high temperature, and a uniform graphite film was segregated from the nickel surface by cooling the sample to room temperature. Scanning and transmission electron microscopy, micro-Raman spectroscopy, and X-ray diffraction prove the presence of a graphite film. Monolayer graphene films obtained from such isotopically-labeled graphite films by mechanical methods have electron mobility values greater than 5000 cm2·V−1·s−1 at low temperatures. Furthermore, such films exhibit the half-integer quantum Hall effect over a wide temperature range from 2 K to 200 K, implying that the graphite grown by this cold-wall CVD approach has a quality as high as highly oriented pyrolytic graphite (HOPG). The results from transport measurements indicate that 13C-labeling does not significantly affect the electrical transport properties of graphene.

Keywords

Chemical vapor deposition (CVD) isotopically-labeled graphite graphene 

References

  1. [1]
    Banholzer, W. F.; Anthony, T. R.; Gilmore, R. In Proceedings of the Second International Conference on New Diamond Science and Technology; Materials Research Society: Pittsburgh, 1990; pp 857.Google Scholar
  2. [2]
    Anthony, T. R.; Banholzer, W. F.; Fleischer, J. F.; Wei, L. H.; Kuo, P. K.; Thomas, R. L.; Pryor, R. W. Thermal-diffusivity of isotopically enriched C-12 diamond. Phys. Rev. B 1990, 42, 1104–1111.CrossRefADSGoogle Scholar
  3. [3]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.CrossRefGoogle Scholar
  5. [5]
    Cai, W. W.; Piner, R. D.; Stadermann, F. J.; Park, S.; Shaibat, M. A.; Ishii, Y.; Yang, D. X.; Velamakanni, A.; An, S. J.; Stoller, M.; An, J. H.; Chen, D. M.; Ruoff, R. S. Synthesis and solid-state NMR structural characterization of C-13-labeled graphite oxide. Science 2008, 321, 1815–1817.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Robertson, S. D. Graphite formation from low temperature pyrolysis of methane over some transition metal surfaces. Nature 1969, 221, 1044–1046.CrossRefADSGoogle Scholar
  7. [7]
    Fedoseev, D. V.; Vnukov, S. P.; Derjaguin, B. V. Physicochemical theory of graphite growth from hydrocarbons. Carbon 1979, 17, 453–458.CrossRefGoogle Scholar
  8. [8]
    Fujita, D.; Homma, T. Surface precipitation of graphite layers on carbon-doped nickel and their stabilization effect against chemisorption and initial oxidation. Surf. Interf. Anal. 1992, 19, 430–434.CrossRefGoogle Scholar
  9. [9]
    Obraztsov, A. N.; Obraztsova, E. A.; Tyurnina, A. V.; Zolotukhin, A. A. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 2007, 45, 2017–2021.CrossRefGoogle Scholar
  10. [10]
    Yu, Q. K.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. S. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008, 93, 113103.CrossRefADSGoogle Scholar
  11. [11]
    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.CrossRefPubMedADSGoogle Scholar
  12. [12]
    Jung, I.; Pelton, M.; Piner, R.; Dikin, D. A.; Stankovich, S.; Watcharotone, S.; Hausner, M.; Ruoff, R. S. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 2007, 7, 3569–3575.CrossRefADSGoogle Scholar
  13. [13]
    Knight, D. S.; White, W. B. Characterization of diamond films by Raman-spectroscopy. J. Mater. Res. 1989, 4, 385–393.CrossRefADSGoogle Scholar
  14. [14]
    Nemanich, R. J.; Solin, S. A. 1st-order and 2nd-order Raman-scattering from finite-size crystals of graphite. Phys. Rev. B 1979, 20, 392–401.CrossRefADSGoogle Scholar
  15. [15]
    Fan, S. S.; Liu, L.; Liu, M. Monitoring the growth of carbon nanotubes by carbon isotope labelling. Nanotechnology 2003, 14, 1118–1123.CrossRefADSGoogle Scholar
  16. [16]
    Zhang, Y.; Tan, Y.; Stomer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.CrossRefPubMedADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Weiwei Cai
    • 1
  • Richard D. Piner
    • 1
  • Yanwu Zhu
    • 1
  • Xuesong Li
    • 1
  • Zhenbing Tan
    • 2
  • Herman Carlo Floresca
    • 3
  • Changli Yang
    • 2
  • Li Lu
    • 2
  • M. J. Kim
    • 3
  • Rodney S. Ruoff
    • 1
  1. 1.Department of Mechanical Engineering and the Texas Materials InstituteUniversity of Texas at AustinAustinUSA
  2. 2.Institute of PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Department of Materials Science and EngineeringUniversity of Texas at DallasRichardsonUSA

Personalised recommendations