Skip to main content
Log in

Graphene Films Prepared Using Energetic Physical Vapor Deposition

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Carbon films were energetically deposited onto copper foil using the physical vapor deposition technique filtered cathodic vacuum arc. Raman spectroscopy and x-ray absorption spectroscopy showed that high quality graphene films of uniform thickness can be deposited onto copper foil at temperatures of 850 °C. The films can be prepared at high deposition rates (∼1 nm/min) and were comparable to graphene films grown at 1050 °C using chemical vapor deposition. This lower growth temperature was made possible by the energetic carbon flux which assisted the arrangement of carbon atoms into graphene layers on the Cu growth surface. Floating substrate potential was found to produce the highest quality graphene and the addition of hydrogen gas during film growth resulted in more defective films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsovet, Science, 306 (5696), 666–669 (2004).

    Article  CAS  Google Scholar 

  2. K.I. Bolotin, K.J. Sikes, J. Hone, H.L. Stormer, P. Kim, Phys. Rev. Lett., 101 (09), 096802 (2008).

    Article  CAS  Google Scholar 

  3. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T. J. Booth, T. Stauber, N.M.R. Peres, A. K. Geim, Science, 320 (5881), 1308–1308 (2008).

    Article  CAS  Google Scholar 

  4. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett., 8 (3), 902-907 (2008).

  5. G. Cravotto, P. Cintas, Che. Eur. J., 16 (18), 5246–5259 (2010).

    Article  CAS  Google Scholar 

  6. K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Röhrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, T. Seyller, Nat. Mater., 8 (3), 203–207 (2009).

    Article  CAS  Google Scholar 

  7. S. Stankovicha, D.A. Dikina, R.D. Pinera, K.A. Kohlhaasa, A. Kleinhammesc, Y. Jiac, Y. Wuc, S.T. Nguyenb, R.S. Ruoff, Carbon, 45 (7), 1558–1565 (2007).

    Article  Google Scholar 

  8. D. Wei, B. Wu, Y. Guo, G. Yu, Y. Liu, Acc. Chem. Res., 46 (1), 106–115 (2012).

    Article  Google Scholar 

  9. A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G.V. Tendeloo, A. Vanhulsel, C.V. Haesendonck, Nanotechnology, 19 (30), 305604, (2008).

  10. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, Nature, 490 (7419), 192–200 (2012).

    Article  CAS  Google Scholar 

  11. I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, S. Smirnov, Acs Nano, 5 (7), 6069–6076 (2011).

    Article  CAS  Google Scholar 

  12. D.W.M. Lau, A. Moafi, M.B. Taylora, J.G. Partridge, D.G. McCulloch, R.C. Powles, D.R. McKenzie, Carbon, 47 (14), 3263–3270 (2009).

    Article  CAS  Google Scholar 

  13. L. Baraton, Z. He, C.S. Lee, J. Maurice, C.S. Cojocaru, A. Gourgues-Lorenzon, Y.H. Lee, D. Pribat, Nanotechnology, 22 (8), 085601 (2011).

    Article  Google Scholar 

  14. D.T. Oldfielda, D.G. McCulloch, C.P. Huynh, K. Sears, S.C. Hawkins, Carbon, 94, 378-385 (2015).

  15. A. Anders, in Cathodic arcs: from fractal spots to energetic condensation, (Springer Science & Business Media, New York, 2008) p 429–490.

  16. J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, S.R.P. Silva, J. Appl. Phys., 80 (1) 440–447 (1996).

  17. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, Phys. Rev. lett., 97 (18), 187401 (2006).

    Article  CAS  Google Scholar 

  18. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Science, 324 (5932), 1312–1314 (2009).

    Article  CAS  Google Scholar 

  19. I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, S. Smirnov, Acs Nano, 5 (7), 6069–6076 (2011).

    Article  CAS  Google Scholar 

  20. J. Stöhr, in NEXAFS Spectroscopy, (Springer-Verlag, New York, 1992) p 276–290.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oldfield, D.T., Huynh, C.P., Hawkins, S.C. et al. Graphene Films Prepared Using Energetic Physical Vapor Deposition. MRS Advances 2, 117–122 (2017). https://doi.org/10.1557/adv.2017.108

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.108

Navigation