Nano Research

, 2:793 | Cite as

Single-walled carbon nanotube growth with non-iron-group “catalysts” by chemical vapor deposition

  • Yoshikazu Homma
  • Huaping Liu
  • Daisuke Takagi
  • Yoshihiro Kobayashi
Open Access
Research Article

Abstract

Various materials have been found to “catalyze” carbon nanotube growth in chemical vapor deposition (CVD) when they become nano-sized particles. These involve not only metals, such as Pd, Pt, Au, Ag, and Cu, but also semiconductors, such as Si, Ge, and SiC. Alumina and diamond nanoparticles also produce carbon nanotubes. These “catalysts”, which are better called “seeds”, can be categorized into two types: one type forms a eutectic liquid or highly-mobile alloy with carbon, and carbon atoms precipitate from the eutectic alloy; the other type remains as a solid phase and form a carbon surface layer during CVD growth. In this paper, we review recent studies of SWCNT growth with these non-iron-group materials and highlight the mechanisms involved.

Keywords

Carbon nanotube catalyst seed growth mechanism chemical vapor deposition vapor-liquid-solid mechanism 

References

  1. [1]
    Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. Carbon Nanotubes Synthesis, Structure, Properties, and Applications; Springer: Berlin, 2001.Google Scholar
  2. [2]
    Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1999.Google Scholar
  3. [3]
    Loiseau, A.; Blasé, J. -C.; Charlier, P.; Gadelle, P.; Journet, C.; Laurent, C.; Peigney, A. Synthesis Methods and Growth Mechanisms. In Understanding Carbon Nanotubes: From Basics to Applications; Loiseau, A., Launois, P., Petit, P., Roche, S., Salvetat, J. -P., Eds.; Springer: Berlin, 2006; pp. 49–130.CrossRefGoogle Scholar
  4. [4]
    Kong, J.; Cassell, A. M.; Dai, H. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett. 1998, 292, 567–574.CrossRefADSGoogle Scholar
  5. [5]
    Hamilton, J. C.; Blakely, J. M. Carbon segregation to single crystal surfaces of Pt, Pd and Co. Surf. Sci. 1980, 91, 199–217.CrossRefADSGoogle Scholar
  6. [6]
    Gavillet, J.; Loiseau, A.; Journet, C.; Willaime, F.; Ducastelle, F.; Charlier, J. C. Root-growth mechanism for single-wall carbon nanotubes. Phys. Rev. Lett. 2001, 87, 275504.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Takagi, D.; Homma, Y.; Hibino, H.; Suzuki, S.; Kobayashi, Y. Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett. 2006, 6, 2642–2645.CrossRefPubMedADSGoogle Scholar
  8. [8]
    Zhou, W.; Han, Z.; Wang, J.; Zhang, Y.; Jin, Z.; Sun, X.; Zhang, Y.; Yan, C.; Li, Y. Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett. 2006, 6, 2987–2990.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Bhaviripudi, S.; Mile, E.; Steiner, S. A.; Zare, A. T.; Dresselhaus, M. S.; Belcher, A. M.; Kong, J. CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts. J. Am. Chem. Soc. 2007, 129, 1516–1517.CrossRefPubMedGoogle Scholar
  10. [10]
    Yuan, D.; Ding, L.; Chu, H.; Feng, Y.; McNicholas, T. P.; Liu, J. Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett. 2008, 8, 2576–2579.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Takagi, D.; Hibino, H.; Suzuki, S.; Kobayashi, Y.; Homma, Y. Carbon nanotube growth from semiconductor nanoparticles. Nano Lett. 2007, 7, 2272–2275.CrossRefPubMedADSGoogle Scholar
  12. [12]
    Liu, H.; Takagi, D.; Ohno, H.; Chiashi, S.; Chokan, T.; Homma, Y. Growth of single-walled carbon nanotubes from ceramic particles by alcohol chemical vapor deposition. Appl. Phys. Express 2008, 1, 014001.CrossRefADSGoogle Scholar
  13. [13]
    Liu, B.; Ren, W.; Gao, L.; Li, S.; Pei, S.; Liu, C.; Jiang, C.; Cheng, H. -M. Metal-catalyst-free growth of single-walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 2082–2083.CrossRefPubMedGoogle Scholar
  14. [14]
    Huang, S.; Cai, Q.; Chen, J.; Qian, Y.; Zhang, L. Metalcatalyst-free growth of single-walled carbon nanotubes on substrates. J. Am. Chem. Soc. 2009, 131, 2094–2095.CrossRefPubMedGoogle Scholar
  15. [15]
    Murakamia, Y.; Chiashi, S.; Miyauchi Y.; Hu, M.; Ogura, M.; Okubo, T.; Maruyama, S. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem. Phys. Lett. 2004, 385, 298–303.CrossRefADSGoogle Scholar
  16. [16]
    Noda, S.; Hasegawa, K.; Sugime, H.; Kakehi, K.; Zhang Z.; Maruyama, S.; Yamaguchi, Y. Millimeter-thick single-walled carbon nanotube forests: Hidden role of catalyst support. Jpn. J. Appl. Phys. 2007, 46, L399–L401.CrossRefADSGoogle Scholar
  17. [17]
    Ohno, H.; Takagi, D.; Yamada, K.; Chiashi, S.; Tokura, A.; Homma, Y. Growth of vertically aligned single-walled carbon nanotubes on alumina and sapphire substrates. Jpn. J. Appl. Phys. 2008, 47, 1956–1960.CrossRefADSGoogle Scholar
  18. [18]
    Liu, H.; Takagi, D.; Chiashi, S.; Chokan, T.; Homma, Y. Investigation of catalytic properties of Al2O3 particles in the growth of single-walled carbon nanotubes. J. Nanosci. Nanotechnol., in press.Google Scholar
  19. [19]
    Okamoto, H.; Massalski, T. B. The Au-C (gold-carbon) system. Bull. Alloy Phase Diag. 1984, 5, 378–379.CrossRefGoogle Scholar
  20. [20]
    Hansen, M.; Anderko, K. Constitution of Binary Alloys; McGraw-Hill: New York, 1958.Google Scholar
  21. [21]
    Oden, L. L.; Gokcen, N. A. Cu-C and Al-Cu-C phase diagrams and thermodynamic properties of C in the alloys from 1550 °C to 2300 °C. Metall. Mat. Trans. B, 1992, 23, 453–458.CrossRefADSGoogle Scholar
  22. [22]
    Takagi, D.; Kobayashi, Y.; Hibino, H.; Suzuki, S.; Homma, Y. Mechanism of gold-catalyzed carbon material growth. Nano Lett. 2008, 8, 832–835.CrossRefPubMedADSGoogle Scholar
  23. [23]
    Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.CrossRefADSGoogle Scholar
  24. [24]
    Tanaka, T.; Hara, S. Thermodynamic evaluation of nanoparticle binary alloy phase diagrams. Z. Metallkd. 2001, 92, 1236–1241.Google Scholar
  25. [25]
    Wautelet, M. Estimation of the variation of the melting temperature with the size of small particles on the basis of a surface-phonon instability model. J. Phys. D. Appl. Phys. 1991, 24, 343–346.CrossRefADSGoogle Scholar
  26. [26]
    Yoshida, H.; Takeda, S.; Uchiyama, T.; Kohno, H.; Homma, Y. Atomic-scale in situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 2008, 8, 2082–2086.CrossRefPubMedADSGoogle Scholar
  27. [27]
    Kodambaka, S.; Tersoff, J.; Reuter, M. C.; Ross, F. M. Germanium nanowire growth below the eutectic temperature. Science 2007, 316, 729–732.CrossRefPubMedADSGoogle Scholar
  28. [28]
    Takagi, D.; Kobayashi, Y.; Homma Y, Carbon nanotube growth from diamond. J. Am. Chem. Soc. 2009, 131, 6922–6923.CrossRefPubMedGoogle Scholar
  29. [29]
    Liu, H.; Takagi, D.; Chiashi, S.; Homma, Y. Controlled growth of horizontally aligned single-walled carbon nanotube arrays by gas flow process. Nanotechnology 2009, 20, 345604.CrossRefPubMedGoogle Scholar
  30. [30]
    Liu, H.; Takagi, D.; Chiashi, S.; Homma, Y. The growth of single-walled carbon nanotubes on a silica substrate without using a metal catalyst. Carbon, in press.Google Scholar
  31. [31]
    Fan, X.; Buczko, R.; Puretzky, A. A.; Geohegan, D. B.; Howe, J. Y.; Pantelides, S. T.; Pennycook, S. J. Nucleation of single-walled carbon nanotubes. Phy. Rev. Lett. 2003, 90, 145501.CrossRefADSGoogle Scholar
  32. [32]
    Raty, J. Y.; Gygi, F.; Galli, G. Growth of carbon nanotubes on metal nanoparticles: A microscopic mechanism from ab initio molecular dynamics simulations. Phy. Rev. Lett. 2005, 95, 096103.CrossRefADSGoogle Scholar
  33. [33]
    Ding, F.; Larsson, P.; Larsson, J. A.; Ahuja, R.; Duan, H.; Rosén, A.; Bolton, K. The importance of strong carbon metal adhesion for catalytic nucleation of single-walled carbon nanotubes. Nano Lett. 2008, 8, 463–468.CrossRefPubMedADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Yoshikazu Homma
    • 1
  • Huaping Liu
    • 1
  • Daisuke Takagi
    • 2
  • Yoshihiro Kobayashi
    • 2
  1. 1.Department of PhysicsTokyo University of ScienceShinjuku, TokyoJapan
  2. 2.NTT Basic Research LaboratoriesNippon Telegraph and Telephone CorporationAtsugi, KanagawaJapan

Personalised recommendations