Nano Research

, 2:783 | Cite as

The dynamics of the nucleation, growth and termination of single-walled carbon nanotubes from in situ Raman spectroscopy during chemical vapor deposition

  • Paul Finnie
  • Andrew Li-Pook-Than
  • Jacques Lefebvre
Open Access
Research Article

Abstract

The dynamics of the chemical vapor deposition (CVD) of single-walled carbon nanotubes (SWNTs) is extracted experimentally using in situ Raman spectroscopy. Nanotubes are grown using a thin film cobalt catalyst and an ethanol precursor in a miniature hot walled reactor with optical access. Raman spectra at room temperature and at the growth temperature are compared for two growth temperatures. The evolution of the G-band, D-band, and radial breathing mode (RBM) is tracked at the growth temperature with time resolution of a few seconds. There are three identifiable phases in the evolution of the Raman signal intensity: an initial exponential increasing phase, a linear growth phase, and a saturation phase. In situ optical spectroscopy thus enables the study of nucleation, steady growth, and deactivation processes to be investigated separately in real time. The evolution curves for all bands (G, D, and RBM), when scaled, collapse onto the same curve, to within experimental uncertainty.

Keywords

Single-walled carbon nanotube chemical vapor deposition Raman spectroscopy nucleation termination 

References

  1. [1]
    Chiashi, S.; Murakami, Y.; Miyauchi, Y.; Maruyama S. Cold wall CVD generation of single-walled carbon nanotubes and in situ Raman scattering measurements of the growth stage. Chem. Phys. Lett. 2004, 386, 89–91.CrossRefADSGoogle Scholar
  2. [2]
    Kaminska, K.; Lefebvre, J.; Austing, D. G.; Finnie, P. Realtime in situ Raman imaging of carbon nanotube growth. Nanotechnology 2007, 18, 165707.CrossRefADSGoogle Scholar
  3. [3]
    Dittmer, S.; Olofsson, N.; Ek Weis, J.; Nerushev, O. A.; Gromov, A. V.; Campbell, E. E. B. In situ Raman studies of single-walled carbon nanotubes grown by local catalyst heating. Chem. Phys. Lett. 2008, 457, 206–210.CrossRefADSGoogle Scholar
  4. [4]
    Picher, M.; Anglaret, E.; Arenal, R.; Jourdain, V. Self-deactivation of single-walled carbon nanotube growth studied by in situ Raman measurements. Nano Lett. 2009, 9, 542–547.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Kim, D.; Jang, H. -S.; Kim, C. -D.; Cho, D. -S.; Yang, H. -S.; Kang, H. -D.; Min, B. -K.; Lee, H. -R. Dynamic growth rate behavior of a carbon nanotube forest characterized by in situ optical growth monitoring. Nano Lett. 2003, 3, 863–865.CrossRefADSGoogle Scholar
  6. [6]
    Geohegan, D. B.; Puretzky, A. A.; Ivanov, I. N.; Jesse, S.; Eres, G. In situ growth rate measurements and length control during chemical vapor deposition of vertically aligned multiwall carbon nanotubes. Appl. Phys. Lett. 2003, 83, 1851–1853.CrossRefADSGoogle Scholar
  7. [7]
    Puretzky, A. A.; Geohegan, D. B.; Jesse, S.; Ivanov, I. N.; Eres, G. In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition. Appl. Phys. A 2005, 81, 223–240.CrossRefADSGoogle Scholar
  8. [8]
    Einarsson, E.; Murakami, Y.; Kadowaki, M.; Maruyama, S. Growth dynamics of vertically aligned single-walled carbon nanotubes from in situ measurements. Carbon 2008, 46, 923–930.CrossRefGoogle Scholar
  9. [9]
    Meshot, E. R.; Hart, A. J. Abrupt self-termination of vertically aligned carbon nanotube growth. Appl. Phys. Lett. 2008, 92, 113107.CrossRefADSGoogle Scholar
  10. [10]
    Puretzky, A. A.; Eres, G.; Rouleau, C. M.; Ivanov, I. N.; Geohegan, D. B. Real-time imaging of vertically aligned carbon nanotube array growth kinetics. Nanotechnology 2008, 19, 055605.CrossRefGoogle Scholar
  11. [11]
    Mattevi, C.; Wirth, C.; Hofmann, S.; Blume, R.; Cantoro, M.; Ducati, C.; Cepek, C.; Knop-Gericke, A.; Milne, S.; Castellarin-Cudia, C.; Dolafi, S.; Goldoni, A.; Schloegl, R.; Robertson, J. In-situ photoelectron spectroscopy study of catalyst-support interactions and growth of carbon nanotube forests. J. Phys. Chem. C 2008, 112, 12207–12213.CrossRefGoogle Scholar
  12. [12]
    Vinten, P.; Lefebvre, J.; Finnie, P. Kinetic critical temperature and optimized chemical vapor deposition growth of carbon nanotubes. Chem. Phys. Lett., 2009, 469, 293–297CrossRefADSGoogle Scholar
  13. [13]
    Lin, M.; Tan, J. P. Y.; Boothroyd, C.; Loh, K.; Tok, E. S.; Foo, Y. -L. Direct observation of single-walled carbon nanotube growth at the atomistic scale. Nano Lett. 2006, 6, 449–452CrossRefPubMedADSGoogle Scholar
  14. [14]
    Valiente, A.; Lopez, P.; Ramos, R.; Ruiz, A.; Li, C.; Xin, Q. In situ study of carbon nanotube formation by C2H2 decomposition on an iron-based catalyst. Carbon 2000, 38, 2003–2006CrossRefGoogle Scholar
  15. [15]
    Kaminska, K.; Lefebvre, J.; Austing, D. G.; Finnie, P. Realtime global Raman imaging and optical manipulation of suspended carbon nanotubes. Phys. Rev. B 2006, 73, 235410CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Paul Finnie
    • 1
    • 2
  • Andrew Li-Pook-Than
    • 1
    • 2
  • Jacques Lefebvre
    • 1
  1. 1.Institute for Microstructural SciencesNational Research Council CanadaOttawaCanada
  2. 2.Department of PhysicsUniversity of OttawaOttawaCanada

Personalised recommendations