Nano Research

, Volume 2, Issue 8, pp 593–598 | Cite as

Role of catalysts in the surface synthesis of single-walled carbon nanotubes

Open Access
Review Article


We demonstrate the role of catalysts in the surface growth of single-walled carbon nanotubes (SWNTs) by reviewing recent progress in the surface synthesis of SWNTs. Three effects of catalysts on surface synthesis are studied: type of catalyst, the relationship between the size of catalyst particles and carbon feeding rates, and interactions between catalysts and substrates. Understanding of the role of catalysts will contribute to our ability to control the synthesis of SWNTs on various substrates and facilitate the fabrication of nanotube-based devices.


single-walled carbon nanotubes (CVD) surface growth catalysts chemical vapor deposition (CVD) 


  1. [1]
    Saito, R.; Dresselhaus, M. S.; Dresselhaus, G. Physical Properties of Carbon Nanotubes; World Scientific Publishing: Singapore, 1998.Google Scholar
  2. [2]
    Anantram, M. P.; Leonard, F. Physics of carbon nanotube electronic devices. Rep. Prog. Phys. 2006, 69, 507–561.CrossRefADSGoogle Scholar
  3. [3]
    Javey, A.; Kim, H.; Brink, M.; Wang, Q.; Ural, A.; Guo, J.; McIntyre, P.; McEuen, P.; Lundstrom, M.; Dai, H. J. High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Mater. 2002, 1, 241–246.PubMedCrossRefADSGoogle Scholar
  4. [4]
    Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nano-technol. 2007, 2, 230–236.CrossRefADSGoogle Scholar
  5. [5]
    Ishikawa, F. N.; Chang, H. K.; Ryu, K.; Chen, P. C.; Badmaev, A.; De Arco, L. G.; Shen, G. Z.; Zhou, C. W. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano 2009, 3, 73–79.PubMedCrossRefGoogle Scholar
  6. [6]
    Kong, J.; Soh, H. T.; Cassell, A. M.; Quate, C. F.; Dai, H. J. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 1998, 395, 878–881.CrossRefADSGoogle Scholar
  7. [7]
    Li, Y.; Liu, J.; Wang, Y. Q.; Wang, Z. L. Preparation of monodispersed Fe-Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem. Mater. 2001, 13, 1008–1014.CrossRefGoogle Scholar
  8. [8]
    Choi, H. C.; Kim, W.; Wang, D. W.; Dai, H. J. Delivery of catalytic metal species onto surfaces with dendrimer carriers for the synthesis of carbon nanotubes with narrow diameter distribution. J. Phys. Chem. B 2002, 106, 12361–12365.CrossRefGoogle Scholar
  9. [9]
    Jeong, G. H.; Yamazaki, A.; Suzuki, S.; Yoshimura, H.; Kobayashi, Y.; Homma, Y. Cobalt-filled apoferritin for suspended single-walled carbon nanotube growth with narrow diameter distribution J. Am. Chem. Soc. 2005, 127, 8238–8239.PubMedCrossRefGoogle Scholar
  10. [10]
    Li, Y. M.; Kim, W.; Zhang, Y. G.; Rolandi, M.; Wang, D. W.; Dai, H. J. Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B 2001, 105, 11424–11431.CrossRefGoogle Scholar
  11. [11]
    An, L.; Owens, J. M.; McNeil, L. E.; Liu, J. Synthesis of nearly uniform single-walled carbon nanotubes using identical inorganic metal-oxide-based molecular nanoclusters as catalysts. Abstr. Pap. Am. Chem. Soc. 2004, 227, 150.Google Scholar
  12. [12]
    Fu, Q.; Huang, S. M.; Liu, J. Chemical vapor depositions of single-walled carbon nanotubes catalyzed by uniform Fe2O3 nanoclusters synthesized using diblock copolymer micelles. J. Phys. Chem. B 2004, 108, 6124–6129.PubMedCrossRefGoogle Scholar
  13. [13]
    Lu, J. Q.; Rider, D. A.; Onyegam, E.; Wang, H.; Winnik, M. A.; Manners, I.; Cheng, Q.; Fu, Q.; Liu, J. Carbon nanotubes with small and tunable diameters from poly(ferrocenylsilane)-block-polysiloxane diblock copolymers. Langmuir 2006, 22, 5174–5179.PubMedCrossRefGoogle Scholar
  14. [14]
    Lu, J. Q.; Moll, N.; Fu, Q.; Liu, J. Iron nanoparticles derived from iron-complexed polymethylglutarimide to produce high-quality lithographically defined single-walled carbon nanotubes. Chem. Mater. 2005, 17, 2237–2240.CrossRefGoogle Scholar
  15. [15]
    Lu, J. Q.; Kopley, T. E.; Moll, N.; Roitman, D.; Chamberlin, D.; Fu, Q.; Liu, J.; Russell, T. P.; Rider, D. A.; Manners, I.; Winnik, M. A. High-quality single-walled carbon nanotubes with small diameter, controlled density, and ordered locations using a polyferrocenylsilane block copolymer catalyst precursor. Chem. Mater. 2005, 17, 2227–2231.CrossRefGoogle Scholar
  16. [16]
    Zhang, Y. G.; Chang, A. L.; Cao, J.; Wang, Q.; Kim, W.; Li, Y. M.; Morris, N.; Yenilmez, E.; Kong, J.; Dai, H. J. Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 2001, 79, 3155–3157.CrossRefADSGoogle Scholar
  17. [17]
    Ismach, A.; Segev, L.; Wachtel, E.; Joselevich, E. Atomic-step-templated formation of single wall carbon nanotube patterns. Angew. Chem. Int. Ed. 2004, 43, 6140–6143.CrossRefGoogle Scholar
  18. [18]
    Liu, J. Abstr. Pap. Am. Chem. Soc. 2004, 227, U273.Google Scholar
  19. [19]
    Kocabas, C.; Hur, S. H.; Gaur, A.; Meitl, M. A.; Shim, M.; Rogers, J. A. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 2005, 1, 1110–1116.PubMedCrossRefGoogle Scholar
  20. [20]
    Han, S.; Liu, X. L.; Zhou, C. W. Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire. J. Am. Chem. Soc. 2005, 127, 5294–5295.PubMedCrossRefGoogle Scholar
  21. [21]
    Ago, H.; Nakamura, K.; Ikeda, K.; Uehara, N.; Ishigami, N.; Tsuji, M. Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface. Chem. Phys. Lett. 2005, 408, 433–438.CrossRefADSGoogle Scholar
  22. [22]
    Ding, L.; Tselev, A.; Wang, J. Y.; Yuan, D. N.; Chu, H. B.; McNicholas, T. P.; Li, Y.; Liu, J. Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett. 2009, 9, 800–805.PubMedCrossRefADSGoogle Scholar
  23. [23]
    Li, Y. M.; Mann, D.; Rolandi, M.; Kim, W.; Ural, A.; Hung, S.; Javey, A.; Cao, J.; Wang, D. W.; Yenilmez, E.; Wang, Q.; Gibbons, J. F.; Nishi, Y.; Dai, H. J. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett. 2004, 4, 317–321.CrossRefADSGoogle Scholar
  24. [24]
    Bhaviripudi, S.; Mile, E.; Steiner, S. A.; Zare, A. T.; Dresselhaus, M. S.; Belcher, A. M.; Kong, J. CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts. J. Am. Chem. Soc. 2007, 129, 1516–1517.PubMedCrossRefGoogle Scholar
  25. [25]
    Takagi, D.; Kobayashi, Y.; Hlbirio, H.; Suzuki, S.; Homma, Y. Mechanism of gold-catalyzed carbon material growth. Nano Lett. 2008, 8, 832–835.PubMedCrossRefADSGoogle Scholar
  26. [26]
    Ding, L.; Yuan, D. N.; Liu, J. Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J. Am. Chem. Soc. 2008, 130, 5428–5429.PubMedCrossRefGoogle Scholar
  27. [27]
    Zhou, W. W.; Han, Z. Y.; Wang, J. Y.; Zhang, Y.; Jin, Z.; Sun, X.; Zhang, Y. W.; Yan, C. H.; Li, Y. Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett. 2006, 6, 2987–2990.PubMedCrossRefADSGoogle Scholar
  28. [28]
    Feng, Y. Y.; Zhang, H. B.; Hou, Y.; McNicholas, T. P.; Yuan, D. N.; Yang, S. W.; Ding, L.; Feng, W.; Liu, J. Room temperature purification of few-walled carbon nanotubes with high yield. ACS Nano 2008, 2, 1634–1638.PubMedCrossRefGoogle Scholar
  29. [29]
    Yuan, D. N.; Ding, L.; Chu, H. B.; Feng, Y. Y.; McNicholas, T. P.; Liu, J. Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett. 2008, 8, 2576–2579.PubMedCrossRefADSGoogle Scholar
  30. [30]
    Takagi, D.; Hibino, H.; Suzuki, S.; Kobayashi, Y.; Homma, Y. Carbon nanotube growth from semiconductor nanoparticles. Nano Lett. 2007, 7, 2272–2275.PubMedCrossRefADSGoogle Scholar
  31. [31]
    Liu, B.; C., R. W.; Gao, L. B.; Li, S. S.; Pei, S. F.; Liu, C.; Jiang, C. B.; Cheng, H. -M. metal-catalyst-free growth of single-walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 2082–2083.PubMedCrossRefGoogle Scholar
  32. [32]
    Huang, S. M.; Cai, Q.; Chen, J. Y.; Y, Q.; Zhang, L. J. Metal-catalyst-free growth of single-walled carbon nanotubes on substrates. J. Am. Chem. Soc. 2009, 131, 2094–2095.PubMedCrossRefGoogle Scholar
  33. [33]
    Saito, Y. Nanoparticles and filled nanocapsules. Carbon 1995, 33, 979–988.CrossRefADSGoogle Scholar
  34. [34]
    Lolli, G.; Zhang, L. A.; Balzano, L.; Sakulchaicharoen, N.; Tan, Y. Q.; Resasco, D. E. Tailoring (n,m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalysts. J. Phys. Chem. B 2006, 110, 2108–2115.PubMedCrossRefGoogle Scholar
  35. [35]
    Buffat, P.; Borel, J. P. Size effect on melting temperature of gold particles. Phys. Rev. A 1976, 13, 2287.CrossRefADSGoogle Scholar
  36. [36]
    Lu, C. G.; Liu, J. Controlling the diameter of carbon nanotubes in chemical vapor deposition method by carbon feeding. J. Phys. Chem. B 2006, 110, 20254–20257.PubMedCrossRefGoogle Scholar
  37. [37]
    Qi, H.; Yuan, D. N.; Liu, J. Two-stage growth of single-walled carbon nanotubes. J. Phys. Chem. C 2007, 111, 6158–6160.CrossRefGoogle Scholar
  38. [38]
    Lu, J.; Yi, S. S.; Kopley, T.; Qian, C.; Liu, J.; Gulari, E. Fabrication of ordered catalytically active nanoparticles derived from block copolymer micelle templates for controllable synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 2006, 110, 6655–6660.PubMedCrossRefGoogle Scholar
  39. [39]
    Zhou, W. W.; Rutherglen, C.; Burke, P. J. Wafer scale synthesis of dense aligned arrays of single-walled carbon nanotubes. Nano Res. 2008, 1, 158–165.CrossRefGoogle Scholar
  40. [40]
    Huang, S. M.; Woodson, M.; Smalley, R.; Liu, J. Growth mechanism of oriented long single walled carbon nanotubes using “fast-heating” chemical vapor deposition process. Nano Lett. 2004, 4, 1025–1028.CrossRefADSGoogle Scholar
  41. [41]
    Maeda, F.; Laffosse, E.; Watanabe, Y.; Suzuki, S.; Homma, Y.; Suzuki, M.; Kitada, T.; Ogiwara, T.; Tanaka, A.; Kimura, M.; Mihai, V. A.; Yoshikawa, H.; Fukushima, S. Surface and interface reactions of catalysts for carbon nanotube growth on Si substrates studied by soft X-ray photoelectron spectroscopy. Phys. E 2004, 24, 19–25.CrossRefGoogle Scholar
  42. [42]
    Murakami, T.; Mitikami, K.; Ishigaki, S.; Matsumoto, K.; Nishio, K.; Isshiki, T.; Harima, H.; Kisoda, K. Catalytic mechanism of a Fe-Co bimetallic system for efficient growth of single-walled carbon nanotubes on Si/SiO2 substrates. J. Appl. Phys. 2006, 100, 094303.Google Scholar
  43. [43]
    Mizuno, K.; Hata, K.; Saito, T.; Ohshima, S.; Yumura, M.; Iijima, S. Selective matching of catalyst element and carbon source in single-walled carbon nanotube synthesis on silicon substrates. J. Phys. Chem. B 2005, 109, 2632–2637.PubMedCrossRefGoogle Scholar
  44. [44]
    Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes. Science 2004, 306, 1362–1364.PubMedCrossRefADSGoogle Scholar
  45. [45]
    Iwasaki, T.; Zhong, G. F.; Aikawa, T.; Yoshida, T.; Kawarada, H. Direct evidence for root growth of vertically aligned single-walled carbon nanotubes by microwave plasma chemical vapor deposition. J. Phys. Chem. B 2005, 109, 19556–19959.PubMedCrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Department of ChemistryDuke UniversityDurhamUSA

Personalised recommendations