Nano Research

, Volume 2, Issue 7, pp 543–552 | Cite as

Direct imaging of titania nanotubes located in mouse neural stem cell nuclei

Open Access
Research Article

Abstract

Titania nanotubes (TiO2-NTs) are a potential drug vehicle for use in nanomedicine. To this end, a preliminary study of the interaction of a model cell with TiO2-NTs has been carried out. TiO2-NTs were first conjugated with a fluorescent label, fluorescein isothiocyanate (FITC). FITC-conjugated titania nanotubes (FITC-TiO2-NTs) internalized in mouse neural stem cells (NSCs, line C17.2) can be directly imaged by confocal microscopy. The confocal imaging showed that FITC-TiO2-NTs readily entered into the cells. After co-incubation with cells for 24 h, FITC-TiO2-NTs localized around the cell nucleus without crossing the karyotheca. More interestingly, the nanotubes passed through the karyotheca entering the cell nucleus after co-incubation for 48 h. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) were also employed in tracking the nanotubes in the cell. These results will be of benefit in future studies of TiO2-NTs for use as a drug vehicle, particularly for DNA-targeting drugs.

Keywords

Titania nanotubes mouse neural stem cells nucleus confocal imaging atomic force microscopy 

References

  1. [1]
    Peer, D.; Karp, J. H.; Hong, S.; Frokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Moghimi, S. M.; Hunter, A. C.; Murray, J. C. Nanomedicine: Current status and future prospects. FASEB J. 2005, 19, 311–330.CrossRefPubMedGoogle Scholar
  3. [3]
    Jain, K. K. Nanotechnology in clinical laboratory diagnostics. Clin. Chim. Acta. 2005, 358, 37–54.CrossRefPubMedGoogle Scholar
  4. [4]
    Nie, S.; Xing, Y.; Kim, G. J.; Simons J. W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 2007, 9, 257–288.CrossRefPubMedGoogle Scholar
  5. [5]
    Rawat, M.; Singh, D.; Saraf, S. Nanocarriers: Promising vehicle for bioactive drugs. Biol. Pharm. Bull. 2006, 29, 1790–1798.CrossRefPubMedGoogle Scholar
  6. [6]
    Chavanpatil, M. D.; Khdair, A.; Panyam, J. Nanoparticles for cellular drug delivery: Mechanisms and factors influencing delivery. J. Nanosci. Nanotechnol. 2006, 6, 2651–2663.CrossRefPubMedGoogle Scholar
  7. [7]
    Choi, M.; Katie, J. A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors. Nano Lett. 2007, 7, 3759–3765.CrossRefPubMedADSGoogle Scholar
  8. [8]
    Loo, C.; Lowery, A.; Halas, West, N. J.; Drezek, R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005, 5, 709–711.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Pantarotto, D.; Briand, J.; Prato, M.; Bianco, A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 2004, 16–17.Google Scholar
  10. [10]
    Porter, A. E.; Gass, M.; Muller, K.; Skepper, J. N.; Midgley, P. A.; Welland, M. Direct imaging of single-walled carbon nanotubes in cells. Nat. Nanotechnol. 2007, 2, 713–717.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Oyelere, A. K.; Chen, P. C.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Peptide-conjugated gold nanorods for nuclear targeting. Bioconjugate Chem. 2007, 18, 1490–1497.CrossRefGoogle Scholar
  12. [12]
    Roy, S. C.; Paulose, M.; Grimes, C. A. The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage. Biomaterials 2007, 28, 4667–4672.CrossRefPubMedGoogle Scholar
  13. [13]
    Cooper, L. F.; Zhou, Y.; Takebe, J.; Guo, J.; Abron, A.; Holme’n, A.; Ellingsen, J. E. Fluoride modification effects on osteoblast behavior and bone formation at TiO2 gritblasted c.p. titanium endosseous implants. Biomaterials 2006, 27, 926–936.CrossRefPubMedGoogle Scholar
  14. [14]
    Kommireddy, D. S.; Sriram, S. M.; Lvov, Y. M.; Mills, D. K. Stem cell attachment to layer-by-layer assembled TiO2 nanoparticle thin films. Biomaterials 2006, 27, 4296–4303.CrossRefPubMedGoogle Scholar
  15. [15]
    Sanchez, C.; Julian, B.; Belleville, P.; Popall, M. Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 2005, 15, 3559 3592.Google Scholar
  16. [16]
    Guzman, R.; Uchida, N.; Bliss, T. M.; He, D.; Christopherson, K. K.; Stellwagen, D. Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc. Natl. Acad. Sci. USA 2007, 104, 10211–10216.CrossRefPubMedADSGoogle Scholar
  17. [17]
    Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Formation of titanium oxide nanotube. Langmuir 1998, 14, 3160–3163.CrossRefGoogle Scholar
  18. [18]
    Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Titania nanotubes prepared by chemical processing. Adv. Mater. 1999, 11, 1307–1311.CrossRefGoogle Scholar
  19. [19]
    Kasuga, T. Formation of titanium oxide nanotubes using chemical treatments and their characteristic properties. Thin Solid Films 2006, 496, 141–145.CrossRefADSGoogle Scholar
  20. [20]
    Santra, S.; Liesenfeld, B.; Bertolino, C.; Dutta, D.; Cao, Z.; Tan, W.; Moudgil, B. M.; Mericle, R. A. Fluorescence lifetime measurements to determine the core-shell nanostructure of FITC-doped silica nanoparticles: An optical approach to evaluate nanoparticle photostability. J. Lumin. 2006, 117, 75–82.CrossRefGoogle Scholar
  21. [21]
    Qu, Y.; Li, X.; Li, R.; Yan, H.; Ouyang, X.; Wang, X. Preparation and characterization of the TiO2 ultrafine particles by detonation method. Mater. Res. Bull. 2008, 43, 97–103.CrossRefGoogle Scholar
  22. [22]
    Li, X.; Qu, Y.; Sun, G.; Jiang, D.; Ouyang, X. Study on the lattice distortion of the as-prepared nanosized TiO2 particles via detonation method. J. Phys. Chem. Solids 2007, 68, 2405–2410.CrossRefADSGoogle Scholar
  23. [23]
    Jena, B. P. Cell secretion machinery: Studies using the AFM. Ultramicroscopy 2006, 106, 663–669.CrossRefPubMedGoogle Scholar
  24. [24]
    Jeremic, A.; Kelly, M.; Cho, W. J.; Cho, S. J.; Horber, J. K. H.; Jena, B. P. Calcium drives fusion of SNARE-apposed bilayers. Cell Biol. Int. 2004, 28, 19–31.CrossRefPubMedGoogle Scholar
  25. [25]
    Binnig, G.; Quate, C. F.; Gerber, C. H. Atomic force microscope. Phys. Rev. Lett. 1986, 56, 930–933.CrossRefPubMedADSGoogle Scholar
  26. [26]
    Singh, S.; Shi, T.; Duffin, R.; Albrecht, C.; Van Berlo, D.; Höhr, D. Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: Role of the specific surface area and of surface methylation of the particles. Toxicol. Appl. Pharmacol. 2007, 222, 141–151.CrossRefPubMedGoogle Scholar
  27. [27]
    Chen, M.; Mikecz, A. Uptake and cytotoxity of nanoparticles. In Nanotoxicology; Zhao, Y.; Nalwa, H. S., Eds.; American Scientific Publishers: California, 2007, pp. 75–90.Google Scholar
  28. [28]
    Fuente, J. M.; Berry, C. C. Tat peptide as an efficient molecule to translocate gold nanoparticles into the cell nucleus. Bioconjugate Chem. 2005, 16, 1176–1180.CrossRefGoogle Scholar
  29. [29]
    Khine, M.; Lau, A.; Ionescu-Zanetti, C.; Seo, J.; Lee, L. P. A single cell electroporation chip. Lab. Chip 2005, 5, 38–43.CrossRefPubMedGoogle Scholar
  30. [30]
    Morris, M. C.; Depollier, J.; Mery, J.; Heitz, F.; Divita, G. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat. Biotechnol. 2001, 19, 1173–1176.CrossRefPubMedGoogle Scholar
  31. [31]
    Li, W.; Chen, C.; Ye, C.; Wei, T.; Zhao, Y.; Lao, F.; Chen, Z.; Meng, H.; Gao, Y.; Yuan, H. The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis. Nanotechnology 2008, 19, 145102.Google Scholar
  32. [32]
    Pantarotto, D.; Singh, R.; McCarthy, D.; Erhardt, M.; Briand, J. P.; Prato, M.; Kostarelos, K.; Bianco, A. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. 2004, 43, 5242–5246.CrossRefGoogle Scholar
  33. [33]
    Cheng, J.; Shiral Fernando, K. A.; Monica Veca, L.; Sun, Y.; Lamond, A.; Lam, Y.; Cheng, S. Reversible accumulation of PEGylated single-walled carbon nanotubes in the mammalian nucleus. ACS Nano 2008, 2, 2085–2094.CrossRefPubMedGoogle Scholar
  34. [34]
    Bhattacharya, R.; Mukherjee, P.; Xiong, Z.; Atala, A.; Soker, S.; Mukhopadhyay, D. Gold nanoparticles inhibit VEGF165-induced proliferation of HUVEC cells. Nano Lett. 2004, 4, 2479–2481.CrossRefADSGoogle Scholar
  35. [35]
    Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R. R.; Sastry, M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 2005, 21, 10644–10654.CrossRefPubMedGoogle Scholar
  36. [36]
    Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W.; Jahnen-Dechent, W. Size-dependent cytotoxicity of gold nanoparticles. Small 2007, 3, 1941–1949.CrossRefPubMedGoogle Scholar
  37. [37]
    Male, K. B.; Lachance, B.; Hrapovic, S.; Sunahara, G.; Luong, J. H. T. Assessment of cytotoxicity of quantum dots and gold nanoparticles using cell-based impedance spectroscopy. Anal. Chem. 2008, 80, 5487–5493.CrossRefPubMedGoogle Scholar
  38. [38]
    Shi, X.; Wang, S.; Sun, H.; Baker, J. R. Jr. Improved biocompatibility of surface functionalized dendrimerentrapped gold nanoparticles. Soft Matter 2007, 3, 71–74.CrossRefGoogle Scholar
  39. [39]
    Li, J. J.; Zou, L.; Hartono, D.; Ong, C. N.; Bay, B. H.; Yung, L. Y. L. Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro. Adv. Mater. 2008, 20, 138–142.CrossRefGoogle Scholar
  40. [40]
    Jia, H.Y.; Liu, Y.; Zhang, X. J.; Han, L.; Du, L.B.; Tian, Q.; Xu, Y. C. Potential oxidative stress of gold nanoparticles by induced-NO releasing in serum. J. Am. Chem. Soc. 2009, 131, 40–41.CrossRefPubMedGoogle Scholar
  41. [41]
    Suh, W. H.; Suh, Y.; Stucky, G. D. Multifunctional nanosystems at the interface of physical and life sciences. Nano Today 2009, 4, 27–36.CrossRefGoogle Scholar
  42. [42]
    Popat, K. C.; Eltgroth, M. T.; Tempa, J.; Grimes, C. A.; Desai, T. A. Titania nanotubes: A novel platform for drug-eluting coatings for medical implants? Small 2007, 3, 1878 1881.Google Scholar
  43. [43]
    Park, T. G.; Jeong, J. H.; Kim, S. W. Current status of polymeric gene delivery systems. Adv. Drug. Deliv. Rev. 2006, 58, 467–486.CrossRefPubMedGoogle Scholar
  44. [44]
    Wang, Z.; Zhao, Y.; Ren, L.; Jin, L.; Sun, L.; Yin, P.; Zhang, Y.; Zhang, Q. Novel gelatin-siloxane nanoparticles decorated by Tat peptide as vectors for gene therapy. Nanotechnology 2008, 19, 445103.Google Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Yanli Wang
    • 1
  • Jia Wang
    • 1
  • Xiaoyong Deng
    • 1
  • Jiao Wang
    • 2
  • Haifang Wang
    • 1
  • Minghong Wu
    • 1
  • Zheng Jiao
    • 1
  • Yuanfang Liu
    • 1
    • 3
  1. 1.Institute of Nanochemistry and NanobiologyShanghai UniversityShanghaiChina
  2. 2.Institute of Systems BiologyShanghai UniversityShanghaiChina
  3. 3.Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations