Skip to main content
Log in

Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. Herein, we describe two in situ posttreatment labeling approaches to stain TiO2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO2 nanoparticles with alkyneconjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Therefore, future experiments with TiO2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dimitrijevic, N. M.; Saponjic, Z. V.; Rabatic, B. M.; Rajh, T. Assembly and charge transfer in hybrid TiO2 architectures using biotin-avidin as a connector. J. Am. Chem. Soc. 2005, 127, 1344–1345.

    Article  Google Scholar 

  2. Liu, J. Q.; de la Garza, L.; Zhang, L. G.; Dimitrijevic, N. M.; Zuo, X. B.; Tiede, D. M.; Rajh, T. Photocatalytic probing of DNA sequence by using TiO2/dopamine-DNA triads. Chem. Phys. 2007, 339, 154–163.

    Article  Google Scholar 

  3. Paunesku, T.; Rajh, T.; Wiederrecht, G.; Maser, J.; Vogt, S.; Stojicevic, N.; Protic, M.; Lai, B.; Oryhon, J.; Thurnauer, M. et al. Biology of TiO2-oligonucleotide nanocomposites. Nat. Mater. 2003, 2, 343–346.

    Article  Google Scholar 

  4. Rajh, T.; Chen, L. X.; Lukas, K.; Liu, T.; Thurnauer, M. C.; Tiede, D. M. Surface restructuring of nanoparticles: An efficient route for ligand-metal oxide crosstalk. J. Phys. Chem. B 2002, 106, 10543–10552.

    Article  Google Scholar 

  5. Urdaneta, I.; Keller, A.; Atabek, O.; Palma, J. L.; Finkelstein-Shapiro, D.; Tarakeshwar, P.; Mujica, V.; Calatayud, M. Dopamine adsorption on TiO2 anatase surfaces. J. Phys. Chem. C 2014, 118, 20688–20693.

    Article  Google Scholar 

  6. Vega-Arroyo, M.; LeBreton, P. R.; Rajh, T.; Zapol, P.; Curtiss, L. A. Density functional study of the TiO2-dopamine complex. Chem. Phys. Lett. 2005, 406, 306–311.

    Article  Google Scholar 

  7. Endres, P. J.; Paunesku, T.; Vogt, S.; Meade, T. J.; Woloschak, G. E. DNA-TiO2 nanoconjugates labeled with magnetic resonance contrast agents. J. Am. Chem. Soc. 2007, 129, 15760–15761.

    Article  Google Scholar 

  8. Thurn, K. T.; Paunesku, T.; Wu, A. G.; Brown, E. M.; Lai, B.; Vogt, S.; Maser, J.; Aslam, M.; Dravid, V.; Bergan, R. et al. Labeling TiO2 nanoparticles with dyes for optical fluorescence microscopy and determination of TiO2-DNA nanoconjugate stability. Small 2009, 5, 1318–1325.

    Article  Google Scholar 

  9. Ye, L.; Pelton, R.; Brook, M. A. Biotinylation of TiO2 nanoparticles and their conjugation with streptavidin. Langmuir 2007, 23, 5630–5637.

    Article  Google Scholar 

  10. Thurn, K. T.; Brown, E.; Wu, A. G.; Vogt, S.; Lai, B.; Maser, J.; Paunesku, T.; Woloschak, G. E. Nanoparticles for applications in cellular imaging. Nanoscale Res. Lett. 2007, 2, 430–441.

    Article  Google Scholar 

  11. Wu, A. G.; Paunesku, T.; Zhang, Z. L.; Vogt, S.; Lai, B.; Maser, J.; Yaghmai, V.; Li, D. B.; Omary, R. A.; Woloschak, G. E. A multimodal nanocomposite for biomedical imaging. AIP Conf. Proc. 2011, 1365, 379.

    Article  Google Scholar 

  12. Arora, H. C.; Jensen, M. P.; Yuan, Y.; Wu, A. G.; Vogt, S.; Paunesku, T.; Woloschak, G. E. Nanocarriers enhance Doxorubicin uptake in drug-resistant ovarian cancer cells. Cancer Res. 2012, 72, 769–778.

    Article  Google Scholar 

  13. Bazak, R.; Ressl, J.; Raha, S.; Doty, C.; Liu, W.; Wanzer, B.; Salam, S. A.; Elwany, S.; Paunesku, T.; Woloschak, G. E. Cytotoxicity and DNA cleavage with core-shell nanocomposites functionalized by a KHdomain DNA binding peptide. Nanoscale 2013, 5, 11394–11399.

    Article  Google Scholar 

  14. Brown, E. M. B.; Paunesku, T.; Wu, A. G.; Thurn, K. T.; Haley, B.; Clark, J.; Priester, T.; Woloschak, G. E. Methods for assessing DNA hybridization of peptide nucleic acidtitanium dioxide nanoconjugates. Anal. Biochem. 2008, 383, 226–235.

    Article  Google Scholar 

  15. Kurepa, J.; Paunesku, T.; Vogt, S.; Arora, H.; Rabatic, B. M.; Lu, J. J.; Wanzer, M. B.; Woloschak, G. E.; Smalle, J. A. Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett. 2010, 10, 2296–2302.

    Article  Google Scholar 

  16. Paunesku, T.; Ke, T. Y.; Dharmakumar, R.; Mascheri, N.; Wu, A. G.; Lai, B.; Vogt, S.; Maser, J.; Thurn, K.; Szolc-Kowalska, B. et al. Gadolinium-conjugated TiO2-DNA oligonucleotide nanoconjugates show prolonged intracellular retention period and T1-weighted contrast enhancement in magnetic resonance images. Nanomedicine 2008, 4, 201–207.

    Article  Google Scholar 

  17. Paunesku, T.; Vogt, S.; Lai, B.; Maser, J.; Stojicevic, N.; Thurn, K. T.; Osipo, C.; Liu, H.; Legnini, D.; Wang, Z. et al. Intracellular distribution of TiO2-DNA oligonucleotide nanoconjugates directed to nucleolus and mitochondria indicates sequence specificity. Nano Lett. 2007, 7, 596–601.

    Article  Google Scholar 

  18. Rajh, T.; Dimitrijevic, N. M.; Rozhkova, E. A. Titanium dioxide nanoparticles in advanced imaging and nanotherapeutics. In Methods and Protocols. Hurst, S. J., Ed; Humana Press: Humana, 2011; pp 63–75.

    Google Scholar 

  19. Thurn, K. T.; Arora, H.; Paunesku, T.; Wu, A. G.; Brown, E. M. B.; Doty, C.; Kremer, J.; Woloschak, G. Endocytosis of titanium dioxide nanoparticles in prostate cancer PC-3M cells. Nanomedicine 2011, 7, 123–130.

    Article  Google Scholar 

  20. Yuan, Y.; Chen, S.; Paunesku, T.; Gleber, S. C.; Liu, W. C.; Doty, C. B.; Mak, R.; Deng, J. J.; Jin, Q. L.; Lai, B. et al. Epidermal growth factor receptor targeted nuclear delivery and high-resolution whole cell X-ray imaging of Fe3O4@TiO2 nanoparticles in cancer cells. ACS Nano 2013, 7, 10502–10517.

    Article  Google Scholar 

  21. Kotsokechagia, T.; Zaki, N. M.; Syres, K.; de Leonardis, P.; Thomas, A.; Cellesi, F.; Tirelli, N. PEGylation of nanosubstrates (titania) with multifunctional reagents: At the crossroads between nanoparticles and nanocomposites. Langmuir 2012, 28, 11490–11501.

    Article  Google Scholar 

  22. Zhang, A. P.; Sun, Y. P. Photocatalytic killing effect of TiO2 nanoparticles on Ls-174-t human colon carcinoma cells. World J. Gastroenterol. 2004, 10, 3191–3193.

    Article  Google Scholar 

  23. Zhang, L.; Dong, S.; Zhu, L. Fluorescent dyes of the esculetin and alizarin families respond to zinc ions ratiometrically. Chem. Commun. 2007, 19, 1891–1893.

    Article  Google Scholar 

  24. Zhang, X.; Wang, F.; Liu, B. W.; Kelly, E. Y.; Servos, M. R.; Liu, J. W. Adsorption of DNA oligonucleotides by titanium dioxide nanoparticles. Langmuir 2014, 30, 839–845.

    Article  Google Scholar 

  25. Paunesku, T.; Vogt, S.; Maser, J.; Lai, B.; Woloschak, G. X-ray fluorescence microprobe imaging in biology and medicine. J. Cell. Biochem. 2006, 99, 1489–1502.

    Article  Google Scholar 

  26. Abbas, Z.; Holmberg, J. P.; Hellström, A. K.; Hagström, M.; Bergenholtz, J.; Hassellöv, M.; Ahlberg, E. Synthesis, characterization and particle size distribution of TiO2 colloidal nanoparticles. Colloid. Surf. A-Physicochem. Eng. Aspects 2011, 384, 254–261.

    Article  Google Scholar 

  27. Vogt, S. MAPS: A set of software tools for analysis and visualization of 3D X-ray fluorescence data sets. J. Phys. IV 2003, 104, 635–638.

    Google Scholar 

  28. Chen, S.; Deng, J.; Yuan, Y.; Flachenecker, C.; Mak, R.; Hornberger, B.; Jin, Q.; Shu, D.; Lai, B.; Maser, J. et al. The bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities. J. Synchrotron Radiat. 2014, 21, 66–75.

    Article  Google Scholar 

  29. Corezzi, S.; Urbanelli, L.; Cloetens, P.; Emiliani, C.; Helfen, L.; Bohic, S.; Elisei, F.; Fioretto, D. Synchrotron-based X-ray fluorescence imaging of human cells labeled with CdSe quantum dots. Anal. Biochem. 2009, 388, 33–39.

    Article  Google Scholar 

  30. Russell-Jones, G.; McTavish, K.; McEwan, J.; Rice, J.; Nowotnik, D. Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumours. J. Inorg. Biochem. 2004, 98, 1625–1633.

    Article  Google Scholar 

  31. Vadlapudi, A. D.; Vadlapatla, R. K.; Mitra, A. K. Sodium dependent multivitamin transporter (SMVT): A potential target for drug delivery. Curr. Drug Targets 2012, 13, 994–1003.

    Article  Google Scholar 

  32. Townsend, S. A.; Evrony, G. D.; Gu, F. X.; Schulz, M. P.; Brown, R. H.; Langer, R. Tetanus to xin C fragment-conjugated nanoparticles for targeted drug delivery to neurons. Biomaterials 2007, 28, 5176–5184.

    Article  Google Scholar 

  33. Kobayashi, H.; Sakahara, H.; Endo, K.; Hosono, M.; Yao, Z. S.; Toyama, S.; Konishi, J. Comparison of the chase effects of avidin, streptavidin, neutravidin, and avidin-ferritin on a radiolabeled biotinylated anti-tumor monoclonal antibody. Jpn. J. Cancer Res. 1995, 86, 310–314.

    Article  Google Scholar 

  34. Amblard, F.; Cho, J. H.; Schinazi, R. F. Cu(I)-catalyzed huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry. Chem. Rev. 2009, 109, 4207–4220.

    Article  Google Scholar 

  35. Meldal, M.; Tornøe, C. W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev. 2008, 108, 2952–3015.

    Article  Google Scholar 

  36. Cardiel, A. C.; Benson, M. C.; Bishop, L. M.; Louis, K. M.; Yeager, J. C.; Tan, Y. Z.; Hamers, R. J. Chemically directed assembly of photoactive metal oxide nanoparticle heterojunctions via the copper-catalyzed azide-alkyne cycloaddition “Click” reaction. ACS Nano 2012, 6, 310–318.

    Article  Google Scholar 

  37. Tao, P.; Li, Y.; Rungta, A.; Viswanath, A.; Gao, J. N.; Benicewicz, B. C.; Siegel, R. W.; Schadler, L. S. TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 2011, 21, 18623–18629.

    Article  Google Scholar 

  38. Upadhyay, A. P.; Behara, D. K.; Sharma, G. P.; Gyanprakash, M.; Pala, R. G. S.; Sivakumar, S. Fabricating appropriate band-edge-staggered heterosemiconductors with optically activated au nanoparticles via click chemistry for photoelectrochemical water splitting. ACS Sustainable Chem. Eng. 2016, 4, 4511–4520.

    Article  Google Scholar 

  39. Yadav, S. K.; Madeshwaran, S. R.; Cho, J. W. Synthesis of a hybrid assembly composed of titanium dioxide nanoparticles and thin multi-walled carbon nanotubes using “Click chemistry”. J. Colloid Interface Sci. 2011, 358, 471–476.

    Article  Google Scholar 

  40. Wiederschain, G. Y. The molecular probes handbook: A guide to fluorescent probes and labeling technologies. Biochemistry Moscow 2011, 76, 1276.

    Article  Google Scholar 

  41. Dieterich, D. C.; Link, A. J.; Graumann, J.; Tirrell, D. A.; Schuman, E. M. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 9482–9487.

    Article  Google Scholar 

  42. Clark, P. M.; Dweck, J. F.; Mason, D. E.; Hart, C. R.; Buck, S. B.; Peters, E. C.; Agnew, B. J.; Hsieh-Wilson, L. C. Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins. J. Am. Chem. Soc. 2008, 130, 11576–11577.

    Article  Google Scholar 

  43. Salic, A.; Mitchison, T. J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 2415–2420.

    Article  Google Scholar 

  44. Malalasekera, A. P.; Wang, H. W.; Samarakoon, T. N.; Udukala, D. N.; Yapa, A. S.; Ortega, R.; Shrestha, T. B.; Alshetaiwi, H.; McLaurin, E. J.; Troyer, D. L. et al. A nanobiosensor for the detection of arginase activity. Nanomedicine 2016, 13, 383–390.

    Article  Google Scholar 

  45. Park, J.; Kadasala, N. R.; Abouelmagd, S. A.; Castanares, M. A.; Collins, D. S.; Wei, A.; Yeo, Y. Polymer-iron oxide composite nanoparticles for EPR-independent drug delivery. Biomaterials 2016, 101, 285–295.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institutes of Health (Nos. CA107467, EB002100, U54CA119341 and GM104530). Implementation of the Bionanoprobe is supported by NIH ARRA (No. SP0007167). Confocal optical imaging work was performed at the Northwestern University Center for Advanced Microscopy generously supported by NCI CCSG P30 CA060553 awarded to the Robert H Lurie Comprehensive Cancer Center. Confocal microscopy was performed on a Nikon A1R multiphoton microscope, acquired through the support of NIH 1S10OD010398-01. Work at the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences contract No. DE-AC02-06CH11357. Metal analysis was performed at the Northwestern University Quantitative Bio-element Imaging Center generously supported by NASA Ames Research Center (No. NNA06CB93G). Use of the Simpson Querrey Institute Analytical BioNanoTechnology Equipment Core (ANTEC) facility was supported by the U.S. Army Research Office, the U.S. Army Medical Research and Materiel Command, and Northwestern University funding received from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF NNCI-1542205). Cryo-TEM work was performed at the Northwestern University Biological Imaging Facility by Imaging Specialist Charlene Wilke. The authors thank Dr. Teng-Leong Chew for his valuable discussion and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gayle E. Woloschak.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, K., Thurn, T., Xin, L. et al. Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection. Nano Res. 11, 464–476 (2018). https://doi.org/10.1007/s12274-017-1654-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1654-8

Keywords

Navigation