Nano Research

, Volume 2, Issue 3, pp 242–253 | Cite as

Facile fabrication of hierarchically porous carbonaceous monoliths with ordered mesostructure via an organic organic self-assembly

Open Access
Research Article


A simple strategy for the synthesis of macro-mesoporous carbonaceous monolith materials has been demonstrated through an organic-organic self-assembly at the interface of an organic scaffold such as polyurethane (PU) foam. Hierarchically porous carbonaceous monoliths with cubic (Im\( \bar 3 \)m) or hexagonal (p6mm) mesostructure were prepared through evaporation induced self-assembly of the mesostructure on the three-dimensional (3-D) interconnecting struts of the PU foam scaffold. The preparation was carried out by using phenol/formaldehyde resol as a carbon precursor, triblock copolymer F127 as a template for the mesostructure and PU foam as a sacrificial monolithic scaffold. Their hierarchical pore system was macroscopically fabricated with cable-like mesostructured carbonaceous struts. The carbonaceous monoliths exhibit macropores of diameter 100–450 μm, adjustable uniform mesopores (3.8–7.5 nm), high surface areas (200–870 m2/g), and large pore volumes (0.17–0.58) cm3/g. Compared with the corresponding evaporation induced self-assembly (EISA) process on a planar substrate, this facile process is a time-saving, labor-saving, space-saving, and highly efficient pathway for mass production of ordered mesoporous materials.


Self-assembly synthesis mesoporous materials carbonaceous monolith templating macroporous materials 

Supplementary material

12274_2009_9022_MOESM1_ESM.pdf (108 kb)
Supplementary material, approximately 108 KB.


  1. [1]
    Wan, Y.; Shi, Y. F.; Zhao, D. Y. Supramolecular aggregates as templates: Ordered mesoporous polymers and carbons. Chem. Mater. 2008, 20, 932–945.CrossRefGoogle Scholar
  2. [2]
    Fan, L. Z.; Hu, Y. S.; Maier, J.; Adelhelm, P.; Smarsly, B.; Antonietti, M. High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Adv. Funct. Mater. 2007, 17, 3083–3087.CrossRefGoogle Scholar
  3. [3]
    Zhao, Y.; Zheng, M. B.; Cao, J. M.; Ke, X. F.; Liu, J. S.; Chen, Y. P.; Tao, J. Easy synthesis of ordered meso/macroporous carbon monolith for use as electrode in electrochemical capacitors. Mater. Lett. 2008, 62, 548–551.CrossRefGoogle Scholar
  4. [4]
    Li, F.; Wang, Z.; Ergang, N. S.; Fyfe, C. A.; Stein, A. Controlling the shape and alignment of mesopores by confinement in colloidal crystals: Designer pathways to silica monoliths with hierarchical porosity. Langmuir 2007, 23, 3996–4004.PubMedCrossRefGoogle Scholar
  5. [5]
    Imhof, A.; Pine, D. J. Uniform macroporous ceramics and plastics by emulsion templating. Adv. Mater. 1998, 10, 697–700.CrossRefGoogle Scholar
  6. [6]
    Caruso, F.; Caruso, R. A.; Möhwald, H. Production of hollow microspheres from nanostructured composite particles. Chem. Mater. 1999, 11, 3309–3314.CrossRefGoogle Scholar
  7. [7]
    Yan, H.; Blanford, C. F.; Holland, B. T.; Smyrl, W. H.; Stein, A. General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion. Chem. Mater. 2000, 12, 1134–1141.CrossRefGoogle Scholar
  8. [8]
    Wakayama, H.; Fukushima, Y. Nanoporous silica prepared with activated carbon molds using supercritical CO2. Chem. Mater. 2000, 12, 756–761.CrossRefGoogle Scholar
  9. [9]
    Deng, Y. H.; Liu, C.; Liu, J.; Zhang, F.; Yu, T.; Zhang, F. Q.; Gu, D., Zhao, D. Y. A novel approach to the construction of 3-D ordered macrostructures with polyhedral particles. J. Mater. Chem. 2008, 18, 408–415.CrossRefGoogle Scholar
  10. [10]
    Taguchi, A.; Smatt, J. H.; Linden, M. Carbon monoliths possessing a hierarchical, fully interconnected porosity. Adv. Mater. 2003, 15, 1209–1211.CrossRefGoogle Scholar
  11. [11]
    Shi, Z. G.; Feng, Y. Q.; Xu, L.; Da, S. L. Zhang, M. Synthesis of a carbon monolith with trimodal pores. Carbon 2003, 41, 2677–2679.CrossRefGoogle Scholar
  12. [12]
    Alvarez, S.; Esquena, J.; Solans, C.; Fuertes, A. B. Meso/macroporous carbon monoliths from polymeric foams. Adv. Eng. Mater. 2004, 6, 897–899.CrossRefGoogle Scholar
  13. [13]
    Lu, A. H.; Li, W. C.; Schmidt, W.; Schuth, F. Fabrication of hierarchically structured carbon monoliths via self-binding and salt templating. Micropor. Mesopor. Mater. 2006, 95, 187–192.CrossRefGoogle Scholar
  14. [14]
    Lu, A. H.; Smatt, J. H.; Backlund, S.; Linden, M. Easy and flexible preparation of nanocasted carbon monoliths exhibiting a multimodal hierarchical porosity. Micropor. Mesopor. Mater. 2004, 72, 59–65.CrossRefGoogle Scholar
  15. [15]
    Wang, L. F.; Lin, S.; Lin, K. F.; Yin, C. Y.; Liang, D. S. Di, Y.; Fan, P. W. Jiang, D. Z.; Xiao, F. S. A facile synthesis of highly ordered mesoporous carbon monolith with mechanically stable mesostructure and superior conductivity from SBA-15 powder. Micropor. Mesopor. Mater. 2005, 85, 136–142.CrossRefGoogle Scholar
  16. [16]
    Deng, Y. H.; Liu, C.; Yu, T.; Liu, F.; Zhang, F. Q.; Wan, Y.; Zhang, L. J.; Wang, C. C.; Tu, B.; Webley, P. A.; Wang, H. T.; Zhao, D. Y. Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach. Chem. Mater. 2007, 19, 3271–3277.CrossRefGoogle Scholar
  17. [17]
    Feng, P. Y.; Bu, X. H.; Stucky, G. D. Pine, D. J. Monolithic mesoporous silica templated by microemulsion liquid crystals. J. Am. Chem. Soc. 2000, 122, 994–995.CrossRefGoogle Scholar
  18. [18]
    Yang, H. F.; Shi, Q. H.; Tian, B. Z.; Xie, S. H.; Zhang, F. Q. Yan, Y.; Tu, B.; Zhao, D. Y. A fast way for preparing crack-free mesostructured silica monolith. Chem. Mater. 2003, 15, 536–541.CrossRefGoogle Scholar
  19. [19]
    Liang, C. D.; Hong, K. L.; Guiochon, G. A.; Mays, J. W.; Dai, S. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angew. Chem. Int. Ed. 2004, 43, 5785–5789.CrossRefGoogle Scholar
  20. [20]
    Liang, C. D.; Dai, S. Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction. J. Am. Chem. Soc. 2006, 128, 5316 5317.PubMedGoogle Scholar
  21. [21]
    Meng, Y.; Gu, D.; Zhang, F. Q.; Shi, Y. F.; Yang, H. F.; Li, Z.; Yu, C. Z.; Tu, B.; Zhao, D. Y. Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation. Angew. Chem. Int. Ed. 2005, 44, 7053–7059.CrossRefGoogle Scholar
  22. [22]
    Meng, Y.; Gu, D.; Zhang, F. Q.; Shi, Y. F.; Cheng, L.; Feng, D.; Wu, Z. X.; Chen, Z. X.; Wan, Y.; Stein, A.; Zhao, D. Y. A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly. Chem. Mater. 2006, 18, 4447–4464.CrossRefGoogle Scholar
  23. [23]
    Huang, Y.; Cai, H. Q.; Yu, T.; Zhang, F. Q.; Zhang, F.; Meng, Y.; Gu, D.; Wan, Y.; Sun, X. L.; Tu, B.; Zhao, D. Y. Formation of mesoporous carbon with a face-centered-cubic Fd \( \bar 3 \) m structure and bimodal architectural pores from the reverse amphiphilic triblock copolymer PPO-PEO-PPO. Angew. Chem. Int. Ed. 2007, 46, 1089–1093.Google Scholar
  24. [24]
    Deng, Y. H.; Yu, T.; Wan, Y.; Shi, Y. F.; Meng, Y.; Gu, D.; Zhang, L. J.; Huang, Y.; Liu, C.; Wu, X. J.; Zhao, D. Y. Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene. J. Am. Chem. Soc. 2007, 129, 1690–1697.PubMedCrossRefGoogle Scholar
  25. [25]
    Tanka, S.; Nishiyama, N.; Egashira, Y.; Ueyama, K. Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite. Chem. Commun. 2005, 16, 2125–2127.CrossRefGoogle Scholar
  26. [26]
    Xue, C. F.; Tu, B.; Zhao, D. Y. Evaporation-induced coating and self-assembly of ordered mesoporous carbon-silica composite monoliths with macroporous architecture on polyurethane foams. Adv. Funct. Mater. 2008, 18, 3914–3921.CrossRefGoogle Scholar
  27. [27]
    Ravikovitch, P. I.; Neimark, A. V. Density functional theory of adsorption in spherical cavities and pore size characterization of templated nanoporous silicas with cubic and three-dimensional hexagonal structures. Langmuir 2002, 18, 1550–1560.CrossRefGoogle Scholar
  28. [28]
    Schmidt, W. Calculation of XRD patterns of simulated FDU-15, CMK-5, and CMK-3 carbon structures. Micropor. Mesopor. Mater. 2009, 117, 372–379.CrossRefGoogle Scholar
  29. [29]
    Inagaki, M.; Morishita, T.; Kuno, A.; Kito, T.; Hirano, M.; Suwa, T.; Kusakawa, K. Carbon foams prepared from polyimide using urethane foam template. Carbon 2004, 42, 497–502.CrossRefGoogle Scholar
  30. [30]
    Trick, K. A.; Saliba, T. E. Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon 1995, 33, 1509 1515.CrossRefGoogle Scholar
  31. [31]
    Konig, A.; Kroke, E. Synthesis of carbon-rich hybrid foam from GAP-modified polyurethane. Propellants Explos. Pyrotech. 2008, 33, 373–380.CrossRefGoogle Scholar
  32. [32]
    Hatchett, D. W.; Kodippili, G.; Kinyanjui, J. M.; Benincasa, F.; Sapochak, L. FTIR analysis of thermally processed PU foam. Polym. Degrad. Stab. 2005, 87, 555–561.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced MaterialsFudan UniversityShanghaiChina

Personalised recommendations