Skip to main content

Advertisement

Log in

Hierarchically porous monoliths of carbon and metal oxides with ordered mesopores

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Hierarchically porous carbon and metal oxide materials offer great benefits in separations, catalysis and renewable energy. We have here used hierarchically porous silica monoliths with ordered mesopores as hard templates to produce nanocast carbon, Co3O4, and NiO monoliths with similar structures. Besides providing the materials with more well-defined physicochemical properties, the ordered mesopore structure also offers an excellent model system for investigating the nanocasting process in detail. The mesopores of the silica monoliths were first infiltrated with furfuryl alcohol or metal nitrate precursor solutions, which subsequently could be thermally converted to carbon or the corresponding metal oxides. After the silica scaffolds have been removed by etching in base solutions, the resulting replica monoliths display macroscopic morphology and macropore structure similar to the original silica template. However, while the carbon and Co3O4 materials both display a well-organized nanowire structure, giving rise to high surface area and narrow pore size distribution, the NiO monoliths exhibit a significantly lower surface area and less well-defined mesopore structure implying that only part of the silica mesopores has been replicated. We believe this apparent difference between the two metal oxides is a consequence of differences in mass transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Zhou, Z.L. Wang, Three-Dimensional Nanoarchitectures: Designing Next-Generation Devices (Springer, New York, 2011), p. p538

    Book  Google Scholar 

  2. N. Ishizuka, H. Minakuchi, K. Nakanishi, N. Soga, N. Tanaka, J. Chromatogr. A 797, 133 (1998)

    Article  CAS  Google Scholar 

  3. J.-L. Blin, A. Leonard, Z.-Y. Yuan, L. Gigot, A. Vantomme, A.K. Cheetham, S. Bao-Lian, Angew. Chem. 115, 2978 (2003)

    Article  Google Scholar 

  4. Y. Li, Z.-Y. Fu, B.-L. Su, Adv. Func. Mater. 22, 4634 (2012)

    Article  CAS  Google Scholar 

  5. K. Jahnisch, V. Hessel, H. Löwe, M. Baerns, Angew. Chem. 43, 406 (2004)

    Article  Google Scholar 

  6. V. Hessel, P. Angeli, A. Gavriilidis, H. Lowe, Ind. Eng. Chem. Res. 44, 9750 (2005)

    Article  CAS  Google Scholar 

  7. R.L. Hartman, J.P. McMullen, K.F. Jensen, Angew. Chem. Int. Ed. 50, 7502 (2011)

    Article  CAS  Google Scholar 

  8. C.G. Frost, L. Mutton, Green Chem. 12, 1687 (2010)

    Article  CAS  Google Scholar 

  9. A. Sachse, A. Galarneau, F. Fajula, F. Di Renzo, P. Creux, B. Coq, Microporous Microporous Mater. 140, 58 (2011)

    Article  CAS  Google Scholar 

  10. N. Linares, S. Hartmann, A. Galarneau, P. Barbaro, ACS Catal. 2, 2194 (2012)

    Article  CAS  Google Scholar 

  11. K. Nakanishi, in Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optic, Energy, and Life Science., S. Bao-Lian, C. Sanchez, Y. Xiao-Yu (Wiley-VCH Verlag, New York, 2012) pp 241-267

  12. K.K. Unger, R. Skudas, M.M. Schulte, J. Chromatogra. A 1184, 393 (2008)

    Article  CAS  Google Scholar 

  13. K. Cabrera, D. Lubda, H.-M. Eggenweiler, H. Minakuchi, K. Nakanishi, J. High Resol. Chromatogr. 23, 93 (2000)

  14. P. Colombo, C. Vakifahmetoglu, S. Costacurta, J. Mater. Sci. 45, 5425 (2010)

    Article  CAS  Google Scholar 

  15. M. Antonietti, B. Berton, C. Goltner, H.-P. Hentze, Adv. Mater. 10, 154 (1998)

    Article  CAS  Google Scholar 

  16. A. Stein, F. Li, N.R. Denny, Chem. Mater. 20, 649 (2008)

    Article  CAS  Google Scholar 

  17. F. Carn, A. Colin, M.-F. Achard, H. Deleuze, E. Sellier, M. Birot, R. Backov, J. Mater. Chem. 14, 1370 (2004)

    Article  CAS  Google Scholar 

  18. J.J. Chui, D.J. Pine, S.T. Bishop, B.F. Chmelka, J. Catal. 221, 400 (2004)

    Article  Google Scholar 

  19. S.A. Davis, S.L. Burkett, N.H. Mendelson, S. Mann, Nature 385, 420 (1997)

    Article  CAS  Google Scholar 

  20. R.A. Caruso, J.H. Schattka, Adv. Mater. 12, 1921 (2000)

    Article  CAS  Google Scholar 

  21. C. Mille, E.C. Tyrode, R.W. Corkery, Chem. Commun. 47, 9873 (2011)

    Article  CAS  Google Scholar 

  22. D. Zhao, P. Yang, B.F. Chmelka, G.D. Stucky, Chem. Mater. 11, 1174 (1999)

    Article  CAS  Google Scholar 

  23. H. Nishihara, S.R. Mukai, D. Yamashita, H. Tamon, Chem. Mater. 17, 683 (2005)

    Article  CAS  Google Scholar 

  24. F. Li, Z. Wang, N.S. Ergang, C.A. Fyfe, A. Stein, Langmuir 23, 3996 (2007)

    Article  CAS  Google Scholar 

  25. F. Schüth, Angew. Chem. Int. Ed. 42, 3604 (2003)

    Article  Google Scholar 

  26. Z. Li, C. Kübel, V.I. Parvulescu, R. Richards, ACS Nano 2, 1205 (2008)

    Article  CAS  Google Scholar 

  27. J.R.A. Sietsma, A.J. van Dillen, P.E. de Jongh, K.P. de Jong, Stud. Surf. Sci. Catal. 162, 95 (2006)

    Article  CAS  Google Scholar 

  28. H. Friedrich, J.R.A. Sietsma, P.E. de Jongh, A.J. Verkleij, K.P. de Jong, J. Am. Chem. Soc. 129, 10249 (2007)

    Article  CAS  Google Scholar 

  29. J.R.A. Sietsma, J.D. Meeldijk, J.P. den Breejen, M. Versluijs-Helder, A.J. van Dillen, P.E. de Jongh, K.P. de Jong, Angew. Chem. Int. Ed. 46, 4549 (2007)

    Article  Google Scholar 

  30. K. Nakanishi, J. Porous Mater. 4, 67 (1997)

    Article  CAS  Google Scholar 

  31. J.-H. Smått, S.A. Schunk, M. Lindén, Chem. Mater. 15, 2354 (2003)

    Article  Google Scholar 

  32. T. Amatani, K. Nakanishi, K. Hirao, T. Kodaira, Chem. Mater. 17, 2114 (2005)

    Article  CAS  Google Scholar 

  33. D. Brandhuber, V. Torma, C. Raab, H. Peterlik, A. Kulak, N. Hüsing, Chem. Mater. 17, 4262 (2005)

    Article  CAS  Google Scholar 

  34. J. Babin, J. Iapichella, B. Lefevre, C. Biolley, J.-P. Bellat, F. Fajulaa, A. Galarneau, New J. Chem. 31, 1907 (2007)

    Article  CAS  Google Scholar 

  35. H. Zhong, G. Zhu, P. Wang, J. Liu, J. Yang, Q. Yang, J. Chromatogr. A 1190, 232 (2008)

    Article  CAS  Google Scholar 

  36. Y. Huang, H. Cai, D. Feng, D. Gu, Y. Deng, B. Tu, H. Wang, P.A. Webley, D. Zhao, Chem. Commun. 2641 (2008). doi:10.1039/B804716B

    Google Scholar 

  37. G.-P. Hao, W.-C. Li, S. Wang, G.-H. Wang, L. Qi, A.-H. Lu, Carbon 49, 3762 (2011)

    Article  CAS  Google Scholar 

  38. A.-H. Lu, D. Zhao, Y. Wan, Nanocasting: A Versatile Strategy for Creating Nanostructured Porous Materials (Royal Society of Chemistry, Cambridge, 2010)

    Google Scholar 

  39. H. Yang, D. Zhao, J. Mater. Chem. 15, 1217 (2005)

    CAS  Google Scholar 

  40. A. Taguchi, J.-H. Smått, M. Lindén, Adv. Mater. 15, 1209 (2003)

    Article  CAS  Google Scholar 

  41. A.-H. Lu, J.-H. Smått, M. Lindén, Adv. Func. Mater. 15, 865 (2005)

    Article  CAS  Google Scholar 

  42. J.-H. Smått, C. Weidenthaler, J.B. Rosenholm, M. Lindén, Chem. Mater. 18, 1443 (2006)

    Article  Google Scholar 

  43. J.-H. Smått, F.M. Sayler, A. Grano, M.G. Bakker, Adv. Eng. Mater. 14, 1059 (2012)

    Article  Google Scholar 

  44. F.M. Sayler, A.J. Grano, J.-H. Smått, M. Lindén, M.G. Bakker, Microporous Microporous Mater. 184, 141 (2014)

    Article  CAS  Google Scholar 

  45. M. Cabo, E. Pellicer, E. Rossinyol, M. Estrader, A. Lopez-Ortega, J. Nogues, O. Castell, S. Surinach, M.D. Baro, J. Mater. Chem. 20, 7021 (2010)

    Article  CAS  Google Scholar 

  46. Z. Wang, F. Li, N.S. Ergang, A. Stein, Chem. Mater. 18, 5543 (2006)

    Article  CAS  Google Scholar 

  47. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 548 (1998)

    Article  CAS  Google Scholar 

  48. A. Galarneau, H. Cambon, F. Di Renzo, R. Ryoo, M. Choi, F. Fajula, New J. Chem. 27, 73 (2003)

    Article  CAS  Google Scholar 

  49. N.R. Khalili, M. Pan, G. Sandi, Carbon 38, 573 (2000)

    Article  CAS  Google Scholar 

  50. M. Choi, R. Ryoo, Nat. Mater. 2, 473 (2003)

    Article  CAS  Google Scholar 

  51. S. Che, K. Lund, T. Tatsumi, S. Iijima, S.H. Joo, R. Ryoo, O. Terasaki, Angew. Chem. Int. Ed. 42, 2182 (2003)

    Article  CAS  Google Scholar 

  52. S. Haffer, T. Waitz, M. Tiemann, J. Phys. Chem. C 114, 2075 (2010)

    CAS  Google Scholar 

  53. X. Sun, Y. Shi, P. Zhang, C. Zheng, X. Zheng, F. Zhang, Y. Zhang, N. Guan, D. Zhao, G.D. Stucky, J. Am. Chem. Soc. 133, 14542 (2011)

    Article  CAS  Google Scholar 

  54. A.J. Grano, F.M. Sayler, J.-H. Smått, M.G. Bakker, Mater. Lett. 111, 154 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Science Foundation CHE-0719398 (MGB) and the Academy of Finland 259310 (JHS). We would like to thank the University of Alabama Central Analytical Facility for access to the SEM, TEM, and XRD.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jan-Henrik Smått or Martin G. Bakker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 208 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grano, A.J., Sayler, F.M., Smått, JH. et al. Hierarchically porous monoliths of carbon and metal oxides with ordered mesopores. J Porous Mater 21, 1113–1122 (2014). https://doi.org/10.1007/s10934-014-9861-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-014-9861-0

Keywords

Navigation