Abstract
To date, wet syntheses of single-crystalline ZnO micro- and nanotubes have been carried out using a two-step indirect approach in which a selective dissolution step is required in order to create the vacant space in the tubular structures. In this work, we develop a direct growth process for preparation of single-crystal ZnO nanotubes and nanorods. We also report that a concave shaped crystal growth front is generally reactive and offers a large surface area for matter deposition during rapid expansion of unidirectional nanomaterials. Depending on the degree of supersaturation of nutrients in solution, the concave growth front can either remain unaltered or undergo a concave-to-convex transformation, leading to the growth of solid nanorods and/or hollow nanotubes. The observed volume inversion should, in principle, also be applicable to the nanoarchitecture of other one-dimensional wurtzite structured nanomaterials, although individual sets of synthesis parameters need to be developed for each target material.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.
Ajayan, P. M.; Ebbesen, T. W. Nanometre-size tubes of carbon. Rep. Prog. Phys. 1997, 60, 1025–1062.
Subramoney, S. Novel nanocarbons-structure, properties, and potential applications. Adv. Mater. 1998, 10, 1157–1171.
Ebbesen, T. W.; Ajayan, P. M. Large-scale synthesis of carbon nanotubes. Nature 1992, 358, 220–222.
Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tomanek, D.; Fischer, J. E.; Smalley, R. E. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273, 483–487.
Tenne, R.; Homyonfer, M.; Feldman, Y. Nanoparticles of layered compounds with hollow cage structures (inorganic fullerene-like structures). Chem. Mater. 1998, 10, 3225–3238, and references therein.
Feldman, Y.; Frey, G. L.; Homyonfer, M.; Lyakhovitskaya, V.; Margulis, L.; Cohen, H.; Hodes, G.; Hutchison, J. L.; Tenne, R. Bulk synthesis of inorganic fullerene-like MS2 (M= Mo, W) from the respective trioxides and the reaction mechanism. J. Am. Chem. Soc. 1996, 118, 5362–5367.
Zak, A.; Feldman, Y.; Alperovich, V.; Rosentsveig, R.; Tenne, R. Growth mechanism of MoS2 fullerene-like nanoparticles by gas-phase synthesis. J. Am. Chem. Soc. 2000, 122, 11108–11116.
Nath, M.; Rao, C. N. R. New metal disulfide nanotubes. J. Am. Chem. Soc. 2001, 123, 4841–4842.
Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S. -E. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater. 2001, 13, 4395–4398.
Li, Q.; Kumar, V.; Li, Y.; Zhang, H.; Marks, T.; Chang, R. P. H. Fabrication of ZnO nanorods and nanotubes in aqueous solutions. Chem. Mater. 2005, 17, 1001–1006.
Tong, Y.; Liu, Y.; Shao, C.; Liu, Y.; Xu, C.; Zhang, J.; Lu, Y.; Shen, D.; Fan, X. Growth and optical properties of faceted hexagonal ZnO nanotubes. J. Phys. Chem. B. 2006, 110, 14714–14718.
Tong, Y.; Liu, Y.; Dong, L.; Zhao, D.; Zhang, J.; Lu, Y.; Shen, D.; Fan, X. Growth of ZnO nanostructures with different morphologies by using hydrothermal technique. J. Phys. Chem. B. 2006, 110, 20263–20267.
Yu, S. -Y.; Zhang, H. -J.; Peng, Z. -P.; Sun, L. -N.; Shi, W. -D. Template-free fabrication of hexagonal ZnO microprism with an interior space. Inorg. Chem. 2007, 46, 8019–8023.
Wu, J. -J.; Liu, S. -C.; Wu, C. -T.; Chen, K. -H.; Chen, L. -C. Heterostructures of ZnO-Zn coaxial nanocables and ZnO nanotubes. Appl. Phys. Lett. 2002, 81, 1312–1314.
Hu, J. Q.; Li, Q.; Meng, X. M.; Lee, C. S.; Lee, S. T. Thermal reduction route to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes. Chem. Mater. 2003, 15, 305–308.
Hu, J. Q.; Bando, Y. Growth and optical properties of single crystalline ZnO whiskers. Appl. Phys. Lett. 2003, 82, 1401–1403.
Zhang, B. P.; Binh, N. T.; Wakatsuki, K.; Segawa, Y.; Yamada, Y.; Usami, N.; Kawasaki, M.; Koinuma, H. Formation of highly aligned ZnO tubes on sapphire (0001) substrates. Appl. Phys. Lett. 2004, 84, 4098–4100.
Sun, Y.; Fuge, G. M.; Fox, N. A.; Riley, D. J.; Ashfold, M. N. R. Synthesis of aligned arrays of ultrathin ZnO nanotubes on an Si wafer coated with a thin ZnO film. Adv. Mater. 2005, 17, 2477–2481.
Jeong, J. S.; Lee, J. Y.; Cho, J. H.; Suh, H. J.; Lee, C. J. Single-crystalline ZnO microtubes formed by coalescence of ZnO nanowires using a simple metal-vapor deposition method. Chem. Mater. 2005, 17, 2752–2756.
Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947–1949.
Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Webber, E.; Russo, R.; Yang, P. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899.
Pacholski, C.; Kornowski, A.; Weller, H. Self-assembly of ZnO: From nanodots to nanorods. Angew. Chem. Int. Ed. 2002, 41, 1188–1191.
Liu, B.; Zeng, H. C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 2003, 125, 4430–4431.
Gao, P. X.; Ding, Y.; Mai, W.; Hughes, W. L.; Lao, C.; Wang, Z. L. Conversion of zinc oxide nanobelt into superlattice-structured nanohelices. Science 2005, 309, 1700–1704.
Liu, B.; Zeng, H. C. Fabrication of ZnO “dandelions” via a modified kirkendall process. J. Am. Chem. Soc. 2004, 126, 16744–16746.
Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowirearrays. Science 2006, 312, 242–246]
Brice, J. C. Crystal Growth Processes; John Wiley and Sons: New York, 1986, Ch. 2, pp. 17–103.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is published with open access at Springerlink.com
Electronic supplementary material
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Liu, B., Zeng, H.C. Direct growth of enclosed ZnO nanotubes. Nano Res. 2, 201–209 (2009). https://doi.org/10.1007/s12274-009-9018-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12274-009-9018-7