Nano Research

, Volume 2, Issue 3, pp 201–209 | Cite as

Direct growth of enclosed ZnO nanotubes

Open Access
Research Article

Abstract

To date, wet syntheses of single-crystalline ZnO micro- and nanotubes have been carried out using a two-step indirect approach in which a selective dissolution step is required in order to create the vacant space in the tubular structures. In this work, we develop a direct growth process for preparation of single-crystal ZnO nanotubes and nanorods. We also report that a concave shaped crystal growth front is generally reactive and offers a large surface area for matter deposition during rapid expansion of unidirectional nanomaterials. Depending on the degree of supersaturation of nutrients in solution, the concave growth front can either remain unaltered or undergo a concave-to-convex transformation, leading to the growth of solid nanorods and/or hollow nanotubes. The observed volume inversion should, in principle, also be applicable to the nanoarchitecture of other one-dimensional wurtzite structured nanomaterials, although individual sets of synthesis parameters need to be developed for each target material.

Keywords

Nanotubes zinc oxide crystal growth 

Supplementary material

12274_2009_9018_MOESM1_ESM.pdf (318 kb)
Supplementary material, approximately 320 KB.

References

  1. [1]
    Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.CrossRefADSGoogle Scholar
  2. [2]
    Ajayan, P. M.; Ebbesen, T. W. Nanometre-size tubes of carbon. Rep. Prog. Phys. 1997, 60, 1025–1062.CrossRefADSGoogle Scholar
  3. [3]
    Subramoney, S. Novel nanocarbons-structure, properties, and potential applications. Adv. Mater. 1998, 10, 1157–1171.CrossRefGoogle Scholar
  4. [4]
    Ebbesen, T. W.; Ajayan, P. M. Large-scale synthesis of carbon nanotubes. Nature 1992, 358, 220–222.CrossRefADSGoogle Scholar
  5. [5]
    Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tomanek, D.; Fischer, J. E.; Smalley, R. E. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273, 483–487.PubMedCrossRefADSGoogle Scholar
  6. [6]
    Tenne, R.; Homyonfer, M.; Feldman, Y. Nanoparticles of layered compounds with hollow cage structures (inorganic fullerene-like structures). Chem. Mater. 1998, 10, 3225–3238, and references therein.CrossRefGoogle Scholar
  7. [7]
    Feldman, Y.; Frey, G. L.; Homyonfer, M.; Lyakhovitskaya, V.; Margulis, L.; Cohen, H.; Hodes, G.; Hutchison, J. L.; Tenne, R. Bulk synthesis of inorganic fullerene-like MS2 (M= Mo, W) from the respective trioxides and the reaction mechanism. J. Am. Chem. Soc. 1996, 118, 5362–5367.CrossRefGoogle Scholar
  8. [8]
    Zak, A.; Feldman, Y.; Alperovich, V.; Rosentsveig, R.; Tenne, R. Growth mechanism of MoS2 fullerene-like nanoparticles by gas-phase synthesis. J. Am. Chem. Soc. 2000, 122, 11108–11116.CrossRefGoogle Scholar
  9. [9]
    Nath, M.; Rao, C. N. R. New metal disulfide nanotubes. J. Am. Chem. Soc. 2001, 123, 4841–4842.PubMedCrossRefGoogle Scholar
  10. [10]
    Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S. -E. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater. 2001, 13, 4395–4398.CrossRefGoogle Scholar
  11. [11]
    Li, Q.; Kumar, V.; Li, Y.; Zhang, H.; Marks, T.; Chang, R. P. H. Fabrication of ZnO nanorods and nanotubes in aqueous solutions. Chem. Mater. 2005, 17, 1001–1006.CrossRefGoogle Scholar
  12. [12]
    Tong, Y.; Liu, Y.; Shao, C.; Liu, Y.; Xu, C.; Zhang, J.; Lu, Y.; Shen, D.; Fan, X. Growth and optical properties of faceted hexagonal ZnO nanotubes. J. Phys. Chem. B. 2006, 110, 14714–14718.PubMedCrossRefGoogle Scholar
  13. [13]
    Tong, Y.; Liu, Y.; Dong, L.; Zhao, D.; Zhang, J.; Lu, Y.; Shen, D.; Fan, X. Growth of ZnO nanostructures with different morphologies by using hydrothermal technique. J. Phys. Chem. B. 2006, 110, 20263–20267.PubMedCrossRefGoogle Scholar
  14. [14]
    Yu, S. -Y.; Zhang, H. -J.; Peng, Z. -P.; Sun, L. -N.; Shi, W. -D. Template-free fabrication of hexagonal ZnO microprism with an interior space. Inorg. Chem. 2007, 46, 8019–8023.PubMedCrossRefGoogle Scholar
  15. [15]
    Wu, J. -J.; Liu, S. -C.; Wu, C. -T.; Chen, K. -H.; Chen, L. -C. Heterostructures of ZnO-Zn coaxial nanocables and ZnO nanotubes. Appl. Phys. Lett. 2002, 81, 1312–1314.CrossRefADSGoogle Scholar
  16. [16]
    Hu, J. Q.; Li, Q.; Meng, X. M.; Lee, C. S.; Lee, S. T. Thermal reduction route to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes. Chem. Mater. 2003, 15, 305–308.CrossRefGoogle Scholar
  17. [17]
    Hu, J. Q.; Bando, Y. Growth and optical properties of single crystalline ZnO whiskers. Appl. Phys. Lett. 2003, 82, 1401–1403.CrossRefADSGoogle Scholar
  18. [18]
    Zhang, B. P.; Binh, N. T.; Wakatsuki, K.; Segawa, Y.; Yamada, Y.; Usami, N.; Kawasaki, M.; Koinuma, H. Formation of highly aligned ZnO tubes on sapphire (0001) substrates. Appl. Phys. Lett. 2004, 84, 4098–4100.CrossRefADSGoogle Scholar
  19. [19]
    Sun, Y.; Fuge, G. M.; Fox, N. A.; Riley, D. J.; Ashfold, M. N. R. Synthesis of aligned arrays of ultrathin ZnO nanotubes on an Si wafer coated with a thin ZnO film. Adv. Mater. 2005, 17, 2477–2481.CrossRefGoogle Scholar
  20. [20]
    Jeong, J. S.; Lee, J. Y.; Cho, J. H.; Suh, H. J.; Lee, C. J. Single-crystalline ZnO microtubes formed by coalescence of ZnO nanowires using a simple metal-vapor deposition method. Chem. Mater. 2005, 17, 2752–2756.CrossRefGoogle Scholar
  21. [21]
    Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947–1949.PubMedCrossRefADSGoogle Scholar
  22. [22]
    Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Webber, E.; Russo, R.; Yang, P. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899.PubMedCrossRefADSGoogle Scholar
  23. [23]
    Pacholski, C.; Kornowski, A.; Weller, H. Self-assembly of ZnO: From nanodots to nanorods. Angew. Chem. Int. Ed. 2002, 41, 1188–1191.CrossRefGoogle Scholar
  24. [24]
    Liu, B.; Zeng, H. C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 2003, 125, 4430–4431.PubMedCrossRefGoogle Scholar
  25. [25]
    Gao, P. X.; Ding, Y.; Mai, W.; Hughes, W. L.; Lao, C.; Wang, Z. L. Conversion of zinc oxide nanobelt into superlattice-structured nanohelices. Science 2005, 309, 1700–1704.PubMedCrossRefADSGoogle Scholar
  26. [26]
    Liu, B.; Zeng, H. C. Fabrication of ZnO “dandelions” via a modified kirkendall process. J. Am. Chem. Soc. 2004, 126, 16744–16746.PubMedCrossRefGoogle Scholar
  27. [27]
    Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowirearrays. Science 2006, 312, 242–246]PubMedCrossRefADSGoogle Scholar
  28. [28]
    Brice, J. C. Crystal Growth Processes; John Wiley and Sons: New York, 1986, Ch. 2, pp. 17–103.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.Minerals, Metals, and Materials Technology Center (M3TC), Faculty of EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations