Nano Research

, Volume 2, Issue 3, pp 183–191 | Cite as

Separation of metallic and semiconducting single-walled carbon nanotubes through fluorous chemistry

Open Access
Research Article

Abstract

Separation of metallic from semiconducting single-walled carbon nanotubes has been a major challenge for some time and some previous efforts have resulted in partial success. We have accomplished the separation effectively by employing fluorous chemistry wherein the diazonium salt of 4-heptadecafluorooc tylaniline selectively reacts with the metallic nanotubes present in the mixture of nanotubes. The resulting fluoroderivative was extracted in perfluorohexane leaving the semiconducting nanotubes in the aqueous layer. The products have been characterized by both Raman and electronic absorption spectroscopy. The method avoids the cumbersome centrifugation step required by some other procedures.

Keywords

Carbon nanotubes metallic semiconducting fluorous separation 

References

  1. [1]
    Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998.Google Scholar
  2. [2]
    Rao, C. N. R.; Govindaraj, A. Nanotubes and Nanowires; RSC Publishing: Cambridge, 2005.Google Scholar
  3. [3]
    Kukovecz, A.; Kramberger, C.; Georgakilas, V.; Prato, M.; Kuzmany, H. A. Detailed Raman study on thin single-wall carbon nanotubes prepared by the HiPCO process. Eur. Phys. J. B 2002, 28, 223–230.CrossRefADSGoogle Scholar
  4. [4]
    Appenzeller, J.; Martel, R.; Derycke, V.; Radosavljevic, M.; Wind, S.; Neumayer, D.; Avouris, P. Carbon nanotubes as potential building blocks for future nanoelectronics. Microelectron. Eng. 2002, 64, 391–397.CrossRefGoogle Scholar
  5. [5]
    Fan, S.; Chapline, M. G.; Franklin, N. R.; Tomber, T. W.; Cassell, A. M.; Dai, H. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 1999, 283, 512–514.PubMedCrossRefADSGoogle Scholar
  6. [6]
    Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622–625.PubMedCrossRefADSGoogle Scholar
  7. [7]
    Baughman, R. H.; Cui, C.; Zakhidov, A. A.; Iqbal, Z.; Barisci, J. N.; Spinks, G. M.; Wallace, G. G.; Mazoldi, A.; De Rossi, D.; Rinzler, A. G.; Jaschinski, O.; Roth, S.; Kertesz, M. Carbon nanotube actuators. Science 1999, 284, 1340–1344.PubMedCrossRefADSGoogle Scholar
  8. [8]
    Ajayan, P. M. Aligned carbon nanotubes in a thin polymer film. Adv. Mater. 1995, 7, 489 491.CrossRefGoogle Scholar
  9. [9]
    Kamras, K.; Itkis, M. E.; Zhao, H.; Hu, B.; Haddon, R. C. Covalent bond formation to a carbon nanotube metal. Science 2003, 301, 1501.CrossRefGoogle Scholar
  10. [10]
    Strano, M. S.; Dyke, C. A.; Usrey, M. L.; Barone, P. W.; Allen, M. J.; Shan, H.; Kitrell, C.; Hauge, R. H.; Tour, J. M.; Smalley, R. E. Electronic structure control of single-walled carbon nanotube functionalization. Science 2003, 301, 1519–1522.PubMedCrossRefADSGoogle Scholar
  11. [11]
    Wang, Q.; Johnson, J. K. Optimization of carbon nanotube arrays for hydrogen adsorption. J. Phys. Chem. B 1999, 103, 4809–4813.CrossRefGoogle Scholar
  12. [12]
    Gülseren, O.; Ylidirim, T.; Ciraci, S. Effects of hydrogen adsorption on single-wall carbon nanotubes: Metallic hydrogen decoration. Phys. Rev. B 2002, 66, 121401.Google Scholar
  13. [13]
    An, K. H.; Heo, J. G.; Jeon, K. G.; Bae, D. J.; Chulsu, J.; Yang, C. W.; Park, C. Y.; Lee, Y. H. X-ray photoemission spectroscopy study of fluorinated single-walled carbon nanotubes. Appl. Phys. Lett. 2002, 80, 4235–4237.CrossRefADSGoogle Scholar
  14. [14]
    Krupke, R.; Hennrich, F.; von Lohneysen, H.; Kappes, M. M. Separation of metallic from semiconducting singlewalled carbon nanotubes. Science 2003, 301, 344–347.PubMedCrossRefADSGoogle Scholar
  15. [15]
    Chattopadhyay, D.; Galeska, L.; Papadimitrakopoulos, F. A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes. J. Am. Chem. Soc. 2003, 125, 3370–3375.PubMedCrossRefGoogle Scholar
  16. [16]
    Li, H. P.; Zhou, B.; Lin, Y.; Gu, L.; Wang, W.; Fernando, K. A. S.; Kumar, S.; Allard, L. F.; Sun, Y. Selective interactions of porphyrins with semiconducting singlewalled carbon nanotubes. J. Am. Chem. Soc. 2004, 126, 1014–1015.PubMedCrossRefGoogle Scholar
  17. [17]
    Chen, Z.; Du, X.; Du, M.; Rancken, C.; Cheng, H.; Rinzler, A. Bulk separative enrichment in metallic or semiconducting single-walled carbon nanotubes. Nano Lett. 2003, 3, 1245–1249.CrossRefGoogle Scholar
  18. [18]
    Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.PubMedCrossRefADSGoogle Scholar
  19. [19]
    Toyoda, S.; Yamaguchi, Y.; Hiwatashi, M.; Tomonari, Y.; Murakami, H.; Nakashima, N. Separation of semiconducting single-walled carbon nanotubes by using a long-alkyl-chain benzenediazonium compound. Chem. Asian J. 2007, 2, 145–149.PubMedCrossRefGoogle Scholar
  20. [20]
    Zhang, W. Fluorous synthesis of heterocyclic systems. Chem. Rev. 2004, 104, 2531–2556.PubMedCrossRefGoogle Scholar
  21. [21]
    Yoshida, J.; Itami, K. Tag strategy for separation and recovery. Chem. Rev. 2002, 102, 3693–3716.PubMedCrossRefGoogle Scholar
  22. [22]
    Campidelli, S.; Menegheti, M.; Prato, M. Separation of metallic and semiconducting single-walled carbon nanotubes via covalent functionalization. Small 2007, 3, 1672–1676.PubMedCrossRefGoogle Scholar
  23. [23]
    Bahr, J. L.; Tour, J. M. Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 2002, 12, 1952–1958.CrossRefGoogle Scholar
  24. [24]
    Dyke, C. A.; Tour, J. M. Solvent-free functionalization of carbon nanotubes. J. Am. Chem. Soc. 2003, 125, 1156–1157.PubMedCrossRefGoogle Scholar
  25. [25]
    Bahr, J. L.; Yang, J.; Kosynkin, D. V.; Bronikowski, M. J.; Smalley, R. E.; Tour, J. M. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode. J. Am. Chem. Soc. 2001, 123, 6536–6542.PubMedCrossRefGoogle Scholar
  26. [26]
    Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Optical properties of single-wall carbon nanotubes. Synth. Met. 1999, 103, 2555–2558.CrossRefGoogle Scholar
  27. [27]
    Rao, A. M.; Richter, E.; Bandow, S.; Chase, B.; Eklund, P. C.; Williams, K. A.; Fang, S.; Subbaswamy, K. R.; Menon, M.; Thess, A.; Smalley, R. E.; Dresselhaus, G.; Dresselhaus, M. S. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 1997, 275, 187–191.PubMedCrossRefGoogle Scholar
  28. [28]
    Brown, S. D. M.; Corio, P.; Marucci, A.; Pimenta, M. A.; Dresselhaus, M. S.; Dresselhaus, G. Secondorder resonant Raman spectra of single-walled carbon nanotubes. Phys. Rev. B 2000, 61, 7734–7742.CrossRefADSGoogle Scholar
  29. [29]
    Brown, S. D. M.; Corio, P.; Marucci, A.; Dresselhaus, M. S.; Pimenta, M. A.; Kneipp, K. Anti-Stokes Raman spectra of single-walled carbon nanotubes. Phys. Rev. B 2000, 61, R51370R5140.Google Scholar
  30. [30]
    Das, A.; Sood, A. K.; Govindaraj, A.; Marco Saitta, A.; Lazzeri, M.; Mauri, F.; Rao, C. N. R. Doping in carbon nanotubes probed by Raman and transport measurements. Phys. Rev. Lett. 2007, 99, 136803.Google Scholar
  31. [31]
    Scolari, M.; Mews, A.; Fu, N.; Myalitsin, A.; Assmus, T.; Balasubramanian, K.; Burghard, M.; Kern, K. Surface enhanced Raman scattering of carbon nanotubes decorated by individual fluorescent gold particles. J. Phys. Chem. C 2008, 112, 391–396.CrossRefGoogle Scholar
  32. [32]
    Vivekchand, S. R. C.; Govindaraj, A.; Sheikh M. M.; Rao C. N. R. New method of purification of carbon nanotubes based on hydrogen treatment. J. Phys. Chem. B 2004, 108, 6935–6937.CrossRefGoogle Scholar
  33. [33]
    O’Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.; Ma, J.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E. Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297, 593–596.PubMedCrossRefADSGoogle Scholar
  34. [34]
    Yoshino, N.; Kitamura, M.; Seto, T.; Shibata, Y.; Abe, M.; Ogino, K. Synthesis of azobenzene derivatives having fluoroalkyl chain and their monomolecular film formation at the air/water interface. Bull. Chem. Soc. Jpn. 1992, 65, 2141–2144.CrossRefGoogle Scholar
  35. [35]
    Fantini, C.; Jorio, A.; Souza, M.; Strano, M. S.; Dresselhaus, M. S.; Pimenta, M. A. Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: Environment and temperature effects. Phys. Rev. Lett. 2004, 93, 147406.Google Scholar
  36. [36]
    Anderson, N.; Hartschuh, A.; Cronin, S.; Novotny, L. Nanoscale vibrational analysis of single-walled carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 2533–2537.PubMedCrossRefGoogle Scholar
  37. [37]
    Maeda, Y.; Takano, Y.; Sagara, A.; Hashimoto, M.; Kanda, M.; Kimura, S.; Lian, Y.; Nakahodo, T.; Tsuchiya, T.; Wakahara, T.; Akasaka, T.; Hasegawa, T.; Kazaoui, S.; Minami, N.; Lu, J.; Nagase, S. Simple purification and selective enrichment of metallic SWCNTs produced using the arc-discharge method. Carbon 2008, 46, 1563–1569.CrossRefGoogle Scholar
  38. [38]
    Zhu, H. -W.; Jiang, B.; Xu, C. -L; Wu, D. -H. Synthesis of high quality single-walled carbon nanotube silks by the arc discharge technique. J. Phys. Chem. B 2003, 107, 6514–6518.CrossRefGoogle Scholar
  39. [39]
    Tarasov, B. P.; Muradyan, V. E.; Shul’ga, Y. M.; Krinichnaya, E. P.; Kuyunko, N. S.; Efimov, O. N.; Obraztsova, E. D.; Schur, D. V.; Maehlen, J. P.; Yartys, V. A.; Lai, H. -J. Synthesis of carbon nanostructures by arc evaporation of graphite rods with Co-Ni and YNi2 catalysts. Carbon 2003, 41, 1357–1364.CrossRefGoogle Scholar
  40. [40]
    Brown, S. D. M.; Jorio, A.; Corio, P.; Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Kneipp, K. Origin of the Breit Wigner Fano lineshape of the tangential G-band feature of metallic carbon nanotubes. Phys. Rev. B 2001, 63, 155414.Google Scholar
  41. [41]
    Blackburn, J. L.; Engtrakul, C.; McDonald, T. J.; Dillon, A. C.; Heben, M. J. Effects of surfactant and boron doping on the BWF feature in the Raman spectrum of singlewall carbon nanotube aqueous dispersions. J. Phys. Chem. B 2006, 110, 25551–25558.PubMedCrossRefGoogle Scholar
  42. [42]
    Shin, H. -J.; Kim, S. M.; Yoon, S. -M.; Benayad, A.; Kim, K. K.; Kim, S. J.; Park, H. K.; Choi, J. -Y.; Lee, Y. H. Tailoring electronic structures of carbon nanotubes by solvent with electron-donating and -withdrawing groups. J. Am. Chem. Soc. 2008, 130, 2062–2066.PubMedCrossRefGoogle Scholar
  43. [43]
    Voggu, R.; Rout, C. S.; Franklin, A. D.; Fisher, J. S.; Rao, C. N. R. Extraordinary sensitivity of the electronic structure and properties of single-walled carbon nanotubes to molecular charge-transfer. J. Phys. Chem. C 2008, 112, 13053–13056.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Chemistry and Physics of Materials Unit, DST unit on Nanoscience and CSIR Centre of Excellence in ChemistryJawaharlal Nehru Centre for Advanced Scientific ResearchJakkur P.O., BangaloreIndia
  2. 2.Solid State and Structural Chemistry UnitIndian Institute of ScienceBangaloreIndia

Personalised recommendations