Skip to main content
Log in

Synthesis and Optical Properties of Iodinated Multi-walled Carbon Nanotubes

  • SPECTROSCOPY OF CONDENSED STATES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

This paper reports synthesis and optical properties of iodinated multi-walled carbon nanotubes (MWCNT). Multi-walled carbon nanotubes were synthesized by aerosol – assisted chemical vapor deposition method and iodinated by crystalline iodine under increased pressure (approximately ~20 bar) at 400°C. X-ray diffraction analysis, Raman and Fourier transform infrared spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy were applied to characterize the iodinated MWCNTs.The results proved the presence of iodine atoms in iodinated MWCNTs. UV-VIS absorption and photoluminescence properties have been studied in pristine MWCNTs and iodinated MWCNTs suspensions in ethanol. Firstly, photoluminescence intensity of the iodinated MWCNTs remarkably enhanced with the appearance of C–I bonds on the surface of MWCNTs, due to the high concentration of intercalated iodine atoms (approximately 30 wt %). The photoluminescence intensity enhancement of peaks at 430 and 520 nm is highly dependent on defects formed by C–I bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. Iijima, Nature (London, U.K.) 354, 56 (1991).

    Article  ADS  Google Scholar 

  2. Y. P. Sun, B. Zhou, Y. Lin, W. Wang, et al., J. Am. Chem. Soc. 128, 7756 (2006).

    Article  Google Scholar 

  3. L. Minati, G. Speranza, I. Bernagozzi, S. Torrengo, et al., Diamond Relat. Mater. 20, 1046 (2011).

    Article  ADS  Google Scholar 

  4. L. Minati, G. Speranza, I. Bernagozzi, S. Torrengo, et al., J. Phys. Chem. C 114, 11068 (2010).

    Article  Google Scholar 

  5. W. Feng, K. Kamıde, F. Zhou, H. Arakı, et al., Jpn. J. Appl. Phys. 43, 36 (2004).

    Article  ADS  Google Scholar 

  6. Y. Y. Hong, M. R. Cai, B. J. Tao, and H. Xun, Chin. Phys. Soc. 15, 2761 (2006).

    Article  ADS  Google Scholar 

  7. J. Zhou, Ch. Wang, Z. Qian, C. Chen, et al., J. Mater. Chem. 24, 11912 (2012).

    Article  Google Scholar 

  8. J. E. Riggs, Z. L. Guo, D. Carroll, and Y. P. Sun, J. Am. Chem. Soc. 122, 5879 (2000).

    Article  Google Scholar 

  9. O. Kozak, M. Sudolská, G. Pramanik, P. Cígler, et al., Chem. Mater. 28, 4085 (2016).

    Article  Google Scholar 

  10. S. Yaragalla, G. Anilkumar, N. Kalarikkal, and S. Thomas, Mater. Sci. Semicond. Proc. 41, 491 (2016).

    Article  Google Scholar 

  11. B. Fournet, J. Coleman, A. Drury, and B. Lahr, Opt. Lett. 28, 266 (2003).

    Article  ADS  Google Scholar 

  12. Y. Lin, B. Zhou, R. B. Martin, and K. B. Henbest, J. Phys. Chem. B 109, 14779 (2005).

    Article  Google Scholar 

  13. Y. Maeda, Sh. Minami, Y. Takehana, J. Dang, et al., Nanoscale 1, 3 (2013).

    Google Scholar 

  14. T. Eremin and E. Obraztsova, Phys. Status Solidi B 255, 1700272 (2018).

    Article  ADS  Google Scholar 

  15. K. S. Coleman, A. K. Chakraborty, S. R. Bailey, J. Sloan, et al., Chem. Mater. 19, 1076 (2007).

    Article  Google Scholar 

  16. Zh. Qian, J. Ma, J. Zhou, and P. Lin, J. Mater. Chem. 22, 22113 (2012).

    Article  Google Scholar 

  17. Y. P. Sun, B. Zhou, Y. Lin, and W. Wang, J. Am. Chem. Soc. 128, 7756 (2006).

    Article  Google Scholar 

  18. Y. Zhao, J. Wei, R. Vajtai, P. M. Ajayan, et al., Sci. Rep. 1, 83 (2011). doi 10.1038/srep00083

    Article  Google Scholar 

  19. J. E. Fischer, Acc. Chem. Res. 35, 1079 (2002).

    Article  Google Scholar 

  20. F. Khoerunnisa, T. Fujimori, T. Itoh, H. Kanoh, et al., Chem. Phys. Lett. 501, 485 (2011).

    Article  ADS  Google Scholar 

  21. W. I. Choi, J. Ihm, and G. Kim, Appl. Phys. Lett. 92, 193110 (2008).

    Article  ADS  Google Scholar 

  22. W. Y. Zhou et al., Appl. Phys. Lett. 80, 2553 (2002).

    Article  ADS  Google Scholar 

  23. J. Zhou, P. Lin, J. Ma, X. Shan, et al., RSC Adv. 3, 9625 (2013).

    Article  Google Scholar 

  24. S. H. Abdullayeva, S. A. Mammadova, M. B. Huseynova, A. B. Huseynov, et al., Az. J. Phys. 3, 31 (2017).

    Google Scholar 

  25. S. Gomez, N. M. Rendtorff, E. F. Aglietti, Y. Sakka, et al., Appl. Surf. Sci. 379, 264 (2016).

    Article  ADS  Google Scholar 

  26. A. Cao, C. Xu, J. Liang, and J. D. Wu, Chem. Phys. Lett. 344, 13 (2001).

    Article  ADS  Google Scholar 

  27. T. P. Dyackova, Y. A. Khan, N. N. Balibina, E. A. Burakova, et al., Tekh. Nauki 9, 444 (2015).

    Google Scholar 

  28. H. Hiura, T. Ebbesen, T. Tanigaki, and H. Takahashi, Chem. Phys. Lett. 202, 509 (1993).

    Article  ADS  Google Scholar 

  29. T. Pichler, M. Knupfer, M. S. Golden, J. Fink, et al., Phys. Rev. Lett. 80, 4729 (1998).

    Article  ADS  Google Scholar 

  30. W. A. de Heer, A. Chatelain, and D. Ugarte, Science (Washington, DC, U. S.) 270, 179 (1995).

    Article  Google Scholar 

  31. J. M. Pitarke and F. J. García-Vidal, Phys. Rev. B 63, 073404 (2001).

    Article  ADS  Google Scholar 

  32. Y. Kim and H. Kim, J. Nanopart. Res. 16, 2169 (2014).

    Article  ADS  Google Scholar 

  33. Y. Hong, M. R. Chai, B. J. Tao, and H. Xun, Chin. Phys. 15, 2761 (2006).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Confocal Microscopy Laboratory (Innovation Sector of Institute Physics, ANAS) for Raman spectroscopy analysis of I‑MWCNTs.

The corresponding author Dr. Samira A. Mammadova is grateful to Dr. O.Z. Alekperov for collaborative PL measurements in IK series He–Cd laser.

The authors are grateful to Dr. B.N. Tarasevich (Baku branch of M.V. Lomonosov Moscow State University) for FTIR analysis of the pristine and I‑MWCNTs and discussion of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Mammadova.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mammadova, S.A., Huseynov, A.B. & Israfilov, A.O. Synthesis and Optical Properties of Iodinated Multi-walled Carbon Nanotubes. Opt. Spectrosc. 125, 921–927 (2018). https://doi.org/10.1134/S0030400X1812024X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X1812024X

Navigation