Nano Research

, Volume 2, Issue 2, pp 135–142 | Cite as

Polyaniline nanofiber composites with amines: Novel materials for phosgene detection

  • Shabnam Virji
  • Robert Kojima
  • Jesse D. Fowler
  • Joey G. Villanueva
  • Richard B. Kaner
  • Bruce H. Weiller
Open Access
Research Article

Abstract

Several orders of magnitude of change in resistance are observed upon chemical doping and dedoping of the conducting polymer polyaniline. This large conductivity range can be utilized to make sensitive chemical sensors. Polyaniline, in its nanofiber form, has even greater sensing capabilities due to the small fiber diameters, high surface area, and porous nanofiber network that enhances gas diffusion into the fibers. Polyaniline nanofibers have been synthesized using a rapid mixing method and dispersed in water allowing them to be easily modified with water soluble agents, making new composite materials. Polyaniline nanofiber composite materials can be used to enhance detection of analytes that unmodified polyaniline would not otherwise be able to detect. The detection mechanism involves the reaction of an additive with the analyte to generate a strong acid that is easily detected by polyaniline, resulting in orders of magnitude changes in resistance. The reaction of the additive alone with the analyte produces no electrical response, however. In this paper, an array of amine-polyaniline nanofiber composite materials is investigated for the detection of phosgene gas. The influence of environmental conditions such as humidity and temperature are examined and a detection mechanism is presented.

Keywords

Polyaniline nanofibers conducting polymer amines chemical sensor phosgene 

References

  1. [1]
    Huang, J.; Virji, S.; Weiller, B. H.; Kaner, R. B. Polyaniline nanofibers: Facile synthesis and chemical sensors. J. Am. Chem. Soc. 2003, 125, 314–315.CrossRefPubMedGoogle Scholar
  2. [2]
    Chaudhari, S.; Patil, P. P. Corrosion protective bi-layered composites of polyaniline and poly(o-anisidine) on low carbon steel. J. Appl. Polym. Sci. 2008, 109, 2546–2561.CrossRefGoogle Scholar
  3. [3]
    Yang, Y.; Westerweele, E.; Zhang, C.; Smith, P.; Heeter, A. Enhanced performance of polymer light-emitting-diodes using high-surface-area polyaniline network electrodes. J. Appl. Phys. 1995, 77, 694–698.CrossRefADSGoogle Scholar
  4. [4]
    Baker, C. O.; Shedd, B.; Innis, P. C.; Whitten, P. G. Spinks, G. M.; Wallace, G. G.; Kaner, R. B. Monolithic actuators from flash-welded polyaniline nanofibers. Adv. Mater. 2008, 20, 155–158.CrossRefGoogle Scholar
  5. [5]
    Jelle, B. P.; Hagen, G. Electrochemical multilayer deposition of polyaniline and Prussian blue and their application in solid state electrochromic windows. J. Appl. Elctrochem. 1998, 28, 1061–1065.CrossRefGoogle Scholar
  6. [6]
    Huang, W. -S.; Humphrey, B. D.; MacDiarmid, A. G. Polyaniline, a novel conducting polymer. J. Chem. Soc, Faraday Trans. 1986, 82, 2385–2400.CrossRefGoogle Scholar
  7. [7]
    Huang, J.; Kaner, R. B. Nanofiber formation in the chemical polymerization of aniline: A mechanistic study. Angew. Chem. Int. Ed. 2004, 43, 5817–5821.CrossRefGoogle Scholar
  8. [8]
    Huang, J.; Kaner, R. B. A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 2004, 126, 851–855.CrossRefPubMedGoogle Scholar
  9. [9]
    Zhang, X.; Goux, W.; Manohar, S. K. Synthesis of polyaniline nanofibers by “nanofiber seeding”. J. Am. Chem. Soc. 2004, 126, 4502–4503.CrossRefPubMedGoogle Scholar
  10. [10]
    Xing, S.; Zhao, C.; Jing, S.; Wang, Z. Morphology and conductivity of polyaniline nanofibers prepared by “seeding” polymerization. Polymer 2006, 47, 2305–2313.CrossRefGoogle Scholar
  11. [11]
    Chiou, N.; Epstein, A. J. Polyaniline nanofibers prepared by dilute polymerization. Adv. Mater. 2005, 17, 1679–1683.CrossRefGoogle Scholar
  12. [12]
    Zhang, X.; Manohar, S. K. Polyaniline nanofibers: Chemical synthesis using surfactants. Chem. Commun. 2004, 20, 2360–2361.CrossRefGoogle Scholar
  13. [13]
    Li, X.; Zhang, X.; Li, H. Preparation and characterization of pyrrole/aniline copolymer nanofibrils using the template-synthesis method. J. Appl. Polym. Sci. 2001, 81, 3002–3007.CrossRefGoogle Scholar
  14. [14]
    Rahy, A.; Yang, D. J. Synthesis of highly conductive polyaniline nanofibers. Mater. Lett. 2008, 62, 4311–4314.CrossRefGoogle Scholar
  15. [15]
    Rahy, A.; Sakrout, M.; Manohar, S.; Cho, S. J.; Ferraris, J.; Yang, D. J. Polyaniline nanofiber synthesis by co-use of ammonium peroxydisulfate and sodium hypochlorite. Chem. Mater. 2008, 20, 4808–4814.CrossRefGoogle Scholar
  16. [16]
    Virji, S.; Fowler, J. D.; Baker, C. O.; Huang, J.; Kaner, R. B.; Weiller, B. H. Polyaniline manofiber composites with metal salts: Chemical sensors for hydrogen sulfide. Small 2005, 1, 624–627.CrossRefPubMedGoogle Scholar
  17. [17]
    Virji, S.; Kaner, R. B.; Weiller, B. H. Hydrazine detection by polyaniline using fluorinated alcohol additives. Chem. Mater. 2005 17, 1256–1260.CrossRefGoogle Scholar
  18. [18]
    Centers for Disease Control and Prevention. http://www.bt.cdc.gov/agent/phosgene/basics/facts.asp (accessed Aug. 29, 2008).
  19. [19]
    Hill, H. H.; Martin, S. J. Conventional analytical methods for chemical warfare agents. Pure Appl. Chem. 2002, 74, 2281–2291.CrossRefGoogle Scholar
  20. [20]
    Frye-Mason, G.; Leuschen, M.; Wald, L.; Paul, K.; Hancock, L. F. Reactive chromophores for sensitive and selective detection of chemical warfare agents and toxic industrial chemicals. Proc. SPIE 2005, 5778, 337–346.CrossRefADSGoogle Scholar
  21. [21]
    Virji, S.; Huang, J.; Kaner, R. B.; Weiller, B. H. Polyaniline nanofiber gas sensors: Examination of response mechanisms. Nano Lett. 2004, 4, 491–496.CrossRefADSGoogle Scholar
  22. [22]
    Huang, J.; Virji, S.; Weiller, B. H.; Kaner, R. B. Nanostructured polyaniline sensors. Chem. Eur. J. 2004, 10, 1315–1319.CrossRefGoogle Scholar
  23. [23]
    Babad, H.; Zeiler, A. G. Chemistry of phosgene. Chem. Rev. 1973, 73, 75–91.CrossRefGoogle Scholar
  24. [24]
    CRC Handbook of Chemistry and Physics, 88 edition [Online]. http://www.hbcpnetbase.com (accessed Aug. 29, 2008).
  25. [25]
    Hatchett, D. W.; Josowicz, M.; Janata, J. Acid doping of polyaniline: Spectroscopic and electrochemical studies. J. Phys. Chem. B. 1999, 103, 10992–10998.CrossRefGoogle Scholar
  26. [26]
    Javadi, H. H. S.; Angelopoulos, M.; MacDiarmid, A. G.; Epstein, A. J. Conduction mechanism of polyanilineeffect of moisture. Synthetic Met. 1988, 26, 1–8.CrossRefGoogle Scholar
  27. [27]
    Segal, L.; Eggerton, F. V. Infrared spectra of ethylenediamine and the dimethylethylenediamines. Appl. Spec. 1961, 15, 116–117.CrossRefADSGoogle Scholar
  28. [28]
    Joung, S. -L.; Amemiya, T.; Murabayashi, M.; Cai, R.; Itoh, K. Chemical adsorption of phosgene on TiO2 and its effect on the photocatalytic oxidation of trichloroethylene. Surf. Sci. 2005, 598, 174–184.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Shabnam Virji
    • 1
  • Robert Kojima
    • 2
  • Jesse D. Fowler
    • 1
  • Joey G. Villanueva
    • 2
  • Richard B. Kaner
    • 2
  • Bruce H. Weiller
    • 1
  1. 1.Materials Processing and Evaluation Department, Space Materials LaboratoryThe Aerospace CorporationLos AngelesUSA
  2. 2.Department of Chemistry & Biochemistry and California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations