Skip to main content
Log in

Low-concentration ammonia gas sensing using polyaniline nanofiber thin film grown by rapid polymerization technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A thin film of polyaniline (PANI) nanofiber was synthesized by a simple and inexpensive rapid chemical polymerization technique on glass substrate at room temperature. The fundamental peaks that appeared in the absorbance, transmittance, and Fourier transform infrared spectroscopy (FTIR) spectra confirmed the formation of polyaniline salt thin film. The surface morphology investigation was done by field emission scanning electron microscopy (FESEM), which showed cylindrical fibers with an average diameter of ~ 59 nm on the entire surface. The XRD pattern of polyaniline nanofiber shows amorphous nature. The gas sensing properties of polyaniline nanofiber thin films were investigated using a Keithley 2400 I–V (± 2 V) sourcemeter interfaced with a computer system, in presence of 0.25–2 ppm and 25–250 ppm in the dry ammonia gas at room temperature. Polyaniline nanofibers show a noticeable response for lower gas concentration, i.e., 0.25–2 ppm of ammonia with response time of ~ 63 s and stability of 19 days. The higher detection limit of the polyaniline nanofiber-based sensor was observed to be 100 ppm with a response of 92% for ammonia gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12

Similar content being viewed by others

Data availability

The data used to support the findings of the study are included within the article.

References

  1. Y.-L. Tang, Z.-J. Li, J.-Y. Ma, Y.-J. Guo, Y.-Q. Fu, X.-T. Zu, Ammonia gas sensors based on ZnO/SiO2 bi-layer nanofilms on ST-cut quartz surface acoustic wave devices. Sens. Actuators B Chem. 201, 114–121 (2014)

    Article  CAS  Google Scholar 

  2. M. Dziubaniuk, R. Bujakiewicz-Korońska, J. Suchanicz, J. Wyrwa, M.J.S. Rękas, A.B. Chemical, Application of bismuth ferrite protonic conductor for ammonia gas detection. Sens. Actuators B Chem. 188, 957–964 (2013)

    Article  CAS  Google Scholar 

  3. P.-C. Chou, H.-I. Chen, I.-P. Liu, C.-W. Hung, C.-C. Chen, J.-K. Liou, W.-C. Liu, Study of an electroless plating (EP)-based Pt/AlGaN/GaN Schottky diode-type ammonia sensor. Sens. Actuators B Chem. 203, 258–262 (2014)

    Article  CAS  Google Scholar 

  4. T. Fu, A room temperature ammonia sensor based on nanosized copper hexacyanoferrate (II). Sens. Actuators B Chem. 212, 487–494 (2015)

    Article  CAS  Google Scholar 

  5. N. Menegazzo, B. Herbert, S. Banerji, K.S. Booksh, Discourse on the utilization of polyaniline coatings for surface plasmon resonance sensing of ammonia vapor. Talanta 85, 1369–1375 (2011)

    Article  CAS  Google Scholar 

  6. T.V. Basova, N.S. Mikhaleva, A.K. Hassan, V.G. Kiselev, Thin films of fluorinated 3d-metal phthalocyanines as chemical sensors of ammonia: an optical spectroscopy study. Sens. Actuators B Chem. 227, 634–642 (2016)

    Article  CAS  Google Scholar 

  7. J. Zhang, X. Liu, G. Neri, N. Pinna, Nanostructured materials for room-temperature gas sensors. Adv. Mater. 28, 795–831 (2016)

    Article  CAS  Google Scholar 

  8. R. Malik, V.K. Tomer, Y.K. Mishra, L. Lin, Functional gas sensing nanomaterials: a panoramic view. Appl. Phys. Rev. 7, 021301 (2020)

    Article  CAS  Google Scholar 

  9. T. Nagai, S. Tamura, N. Imanaka, Solid electrolyte type ammonia gas sensor based on trivalent aluminum ion conducting solids. Sens. Actuators B Chem. 147, 735–740 (2010)

    Article  CAS  Google Scholar 

  10. M. Atashbar, A. Sadek, W. Wlodarski, S. Sriram, M. Bhaskaran, C. Cheng, R. Kaner, K. Kalantar-Zadeh, Layered SAW gas sensor based on CSA synthesized polyaniline nanofiber on AlN on 64 YX LiNbO3 for H2 sensing. Sens. Actuators B Chem. 138, 85–89 (2009)

    Article  CAS  Google Scholar 

  11. R. Arsat, X. Yu, Y. Li, W. Wlodarski, K. Kalantar-Zadeh, Hydrogen gas sensor based on highly ordered polyaniline nanofibers. Sens. Actuators B Chem. 137, 529–532 (2009)

    Article  CAS  Google Scholar 

  12. H. Sustkova, A. Posta, J. Voves, Polyaniline emeraldine salt as an ammonia gas sensor—comparison of quantum-based simulation with experiment. Physica E 114, 113621 (2019)

    Article  CAS  Google Scholar 

  13. X. Wang, L. Gong, D. Zhang, X. Fan, Y. Jin, L. Guo, Room temperature ammonia gas sensor based on polyaniline/copper ferrite binary nanocomposites. Sens. Actuators B Chem. 322, 128615 (2020)

    Article  CAS  Google Scholar 

  14. L. Yang, X. Xu, M. Liu, C. Chen, J. Cui, X. Chen, K. Wu, D. Sun, Wearable and flexible bacterial cellulose/polyaniline ammonia sensor based on a synergistic doping strategy. Sens. Actuators B Chem. 334, 129647 (2021)

    Article  CAS  Google Scholar 

  15. S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 34, 783–810 (2009)

    Article  CAS  Google Scholar 

  16. J. Ma, H. Fan, Z. Li, Y. Jia, A.K. Yadav, G. Dong, W. Wang, W. Dong, S. Wang, Multi-walled carbon nanotubes/polyaniline on the ethylenediamine modified polyethylene terephthalate fibers for a flexible room temperature ammonia gas sensor with high responses. Sens. Actuators B Chem. 334, 129677 (2021)

    Article  CAS  Google Scholar 

  17. H. Yu, C. Wang, J. Zhang, H. Li, S. Liu, Y. Ran, H. Xia, Cyclodextrin-assisted synthesis of water-dispersible polyaniline nanofibers by controlling secondary growth. Mater. Chem. Phys. 133, 459–464 (2012)

    Article  CAS  Google Scholar 

  18. X. Yu, X. Chen, X. Chen, X. Zhao, X. Yu, X. Ding, Digital ammonia gas sensor based on quartz resonator tuned by interdigital electrode coated with polyaniline film. Org. Electron. 76, 105413 (2020)

    Article  CAS  Google Scholar 

  19. H.A. Mohammed, B. Adel Esttaifan, M.H. Yaacob, Highly sensitive fiber Bragg grating based gas sensor integrating polyaniline nanofiber for remote monitoring. Opt. Fiber Technol. 71, 102901 (2022)

    Article  CAS  Google Scholar 

  20. P. Zamani, D. Higgins, F. Hassan, G. Jiang, J. Wu, S. Abureden, Z. Chen, Electrospun iron–polyaniline–polyacrylonitrile derived nanofibers as non–precious oxygen reduction reaction catalysts for PEM fuel cells. Electrochim. Acta 139, 111–116 (2014)

    Article  CAS  Google Scholar 

  21. C. Bavatharani, E. Muthusankar, S.M. Wabaidur, Z.A. Alothman, K.M. Alsheetan, M.m. Al-Anazy, D. Ragupathy, Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: a review. Synth. Metals 271, 116609 (2021)

    Article  CAS  Google Scholar 

  22. X. Wang, T. Yang, X. Li, K. Jiao, Three-step electrodeposition synthesis of self-doped polyaniline nanofiber-supported flower-like Au microspheres for high-performance biosensing of DNA hybridization recognition. Biosens. Bioelectron. 26, 2953–2959 (2011)

    Article  CAS  Google Scholar 

  23. M. Matsuguchi, T. Asahi, Properties and stability of polyaniline nanofiber ammonia sensors fabricated by novel on-substrate method. Sens. Actuators B Chem. 160, 999–1004 (2011)

    Article  CAS  Google Scholar 

  24. S.A. Ibrahim, N. Abdul Rahman, M.H. Yaacob, M.H. Abu Bakar, F.S. Mohamad, N.A. Mohd Yahya, NMd. Yusoff, M.A. Mahdi, Self-assembled polyaniline nanostructures in situ deposited on silica optical fibers for ammonia gas sensing. Synth. Metals 283, 116962 (2022)

    Article  CAS  Google Scholar 

  25. C. Zhu, Y. Xu, T. Zhou, L. Liu, Q. Chen, B. Gao, T. Zhang, Self-assembly polyaniline films for the high-performance ammonia gas sensor. Sens. Actuators B Chem. 365, 131928 (2022)

    Article  CAS  Google Scholar 

  26. H. Tai, X. Xu, Z. Ye, C. Liu, G. Xie, Y. Jiang, P-P heterojunction sensor of self-assembled polyaniline nano-thin film/microstructure silicon array for NH3 detection. Chem. Phys. Lett. 621, 58–64 (2015)

    Article  CAS  Google Scholar 

  27. V. Talwar, O. Singh, R.C. Singh, ZnO assisted polyaniline nanofibers and its application as ammonia gas sensor. Sens. Actuators B Chem. 191, 276–282 (2014)

    Article  CAS  Google Scholar 

  28. H. Tai, Y. Jiang, G. Xie, J. Yu, X. Chen, Z. Ying, Influence of polymerization temperature on NH3 response of PANI/TiO2 thin film gas sensor. Sens. Actuators B Chem. 129, 319–326 (2008)

    Article  CAS  Google Scholar 

  29. U. Patil, N.S. Ramgir, N. Karmakar, A. Bhogale, A. Debnath, D. Aswal, S. Gupta, D. Kothari, Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films. Appl. Surf. Sci. 339, 69–74 (2015)

    Article  CAS  Google Scholar 

  30. N.R. Tanguy, M. Thompson, N. Yan, A review on advances in application of polyaniline for ammonia detection. Sens. Actuators B Chem. 257, 1044–1064 (2018)

    Article  CAS  Google Scholar 

  31. L.-H. Xu, T.-M. Wu, Synthesis of highly sensitive ammonia gas sensor of polyaniline/graphene nanoribbon/indium oxide composite at room temperature. J. Mater. Sci.: Mater. Electron. 31, 7276–7283 (2020)

    CAS  Google Scholar 

  32. V.P. Anju, P.R. Jithesh, S.K. Narayanankutty, A novel humidity and ammonia sensor based on nanofibers/polyaniline/polyvinyl alcohol. Sens. Actuators A 285, 35–44 (2019)

    Article  CAS  Google Scholar 

  33. A.S. Dive, N.P. Huse, K.P. Gattu, R. Sharma, Soft chemical growth of Zn0.8Mg0.2S one dimensional nanorod thin films for efficient visible light photosensor. Sens. Actuators A: Phys. 266, 36–45 (2017)

    Article  CAS  Google Scholar 

  34. J. Wojkiewicz, V. Bliznyuk, S. Carquigny, N. Elkamchi, N. Redon, T. Lasri, A. Pud, S. Reynaud, Nanostructured polyaniline-based composites for ppb range ammonia sensing. Sens. Actuators B Chem. 160, 1394–1403 (2011)

    Article  CAS  Google Scholar 

  35. N. Deshpande, Y. Gudage, R. Sharma, J. Vyas, J. Kim, Y. Lee, Studies on tin oxide-intercalated polyaniline nanocomposite for ammonia gas sensing applications. Sens. Actuators B Chem. 138, 76–84 (2009)

    Article  CAS  Google Scholar 

  36. T. Li, Z. Qin, B. Liang, F. Tian, J. Zhao, N. Liu, M. Zhu, Morphology-dependent capacitive properties of three nanostructured polyanilines through interfacial polymerization in various acidic media. Electrochim. Acta 177, 343–351 (2015)

    Article  CAS  Google Scholar 

  37. H. Kebiche, D. Debarnot, A. Merzouki, F. Poncin-Epaillard, N. Haddaoui, Relationship between ammonia sensing properties of polyaniline nanostructures and their deposition and synthesis methods. Anal. Chim. Acta 737, 64–71 (2012)

    Article  CAS  Google Scholar 

  38. N. Menegazzo, D. Boyne, H. Bui, T.P. Beebe Jr., K.S. Booksh, DC magnetron sputtered polyaniline-HCl thin films for chemical sensing applications. Anal. Chem. 84, 5770–5777 (2012)

    Article  CAS  Google Scholar 

  39. N. Deshpande, Y. Gudage, R. Devan, Y. Ma, Y. Lee, R. Sharma, Room-temperature gas sensing studies of polyaniline thin films deposited on different substrates. Smart Mater. Struct. 18, 095010 (2009)

    Article  Google Scholar 

  40. M.S. Augustine, P. Jeeju, S. Varma, P.F. Xavier, S. Jayalekshmi, Enhanced photoluminescence in transparent thin films of polyaniline–zinc oxide nanocomposite prepared from oleic acid modified zinc oxide nanoparticles. Thin Solid Films 562, 84–89 (2014)

    Article  Google Scholar 

  41. P. Kunzo, P. Lobotka, M. Micusik, E. Kovacova, Palladium-free hydrogen sensor based on oxygen-plasma-treated polyaniline thin film. Sens. Actuators B Chem. 171–172, 838–845 (2012)

    Article  Google Scholar 

  42. M. Trchová, I. Šeděnková, E. Tobolková, J. Stejskal, FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films. Polym. Degrad. Stab. 86, 179–185 (2004)

    Article  Google Scholar 

  43. H. Xu, D. Ju, W. Li, H. Gong, J. Zhang, J. Wang, B. Cao, Low-working-temperature, fast-response-speed NO2 sensor with nanoporous-SnO2/polyaniline double-layered film. Sens. Actuators B Chem. 224, 654–660 (2016)

    Article  CAS  Google Scholar 

  44. S. Bukkawar, N. Sarwade, B.N. Thorat, H. Muthurajan, Sensibility of polyaniline nanofibers to biomarker of benzene recognized as a carcinogen. Perspect. Sci. 8, 283–286 (2016)

    Article  Google Scholar 

  45. K.I. Ajeel, Q.S. Kareem, Synthesis and characteristics of polyaniline (PANI) filled by graphene (PANI/GR) nano-films. J. Phys.: Conf. Ser. 1234, 012020 (2019)

    CAS  Google Scholar 

  46. M.M. Nobrega, C.M. Izumi, M.L. Temperini, Probing molecular ordering in the HCl-doped polyaniline with bulk and nanofiber morphology by their thermal behavior. Polym. Degrad. Stab. 113, 66–71 (2015)

    Article  CAS  Google Scholar 

  47. M. Bhaumik, H.J. Choi, R.I. McCrindle, A. Maity, Composite nanofibers prepared from metallic iron nanoparticles and polyaniline: high performance for water treatment applications. J. Colloid Interface Sci. 425, 75–82 (2014)

    Article  CAS  Google Scholar 

  48. J.N. Gavgani, A. Hasani, M. Nouri, M. Mahyari, A. Salehi, Highly sensitive and flexible ammonia sensor based on S and N co-doped graphene quantum dots/polyaniline hybrid at room temperature. Sens. Actuators B Chem. 229, 239–248 (2016)

    Article  CAS  Google Scholar 

  49. G. Rizzo, A. Arena, N. Donato, M. Latino, G. Saitta, A. Bonavita, G. Neri, Flexible, all-organic ammonia sensor based on dodecylbenzene sulfonic acid-doped polyaniline films. Thin Solid Films 518, 7133–7137 (2010)

    Article  CAS  Google Scholar 

  50. Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, B. Liu, Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuators B Chem. 178, 485–493 (2013)

    Article  CAS  Google Scholar 

  51. A.L. Sharma, K. Kumar, A. Deep, Nanostructured polyaniline films on silicon for sensitive sensing of ammonia. Sens. Actuators B Chem. 198, 107–112 (2013)

    Article  CAS  Google Scholar 

  52. R.B. Birajadar, D. Upadhye, S. Mahajan, J.C. Vyas, R. Sharma, Study of room temperature LPG sensing behavior of polyaniline thin film synthesized by cost effective oxidative polymerization technique. J. Mater. Sci.: Mater. Electron. 26, 5065–5070 (2015)

    CAS  Google Scholar 

  53. S. Patil, M. Chougule, S. Sen, V. Patil, Measurements on room temperature gas sensing properties of CSA doped polyaniline–ZnO nanocomposites. Measurement 45, 243–249 (2012)

    Article  Google Scholar 

  54. B. Raut, P. Godse, S. Pawar, M. Chougule, D. Bandgar, V. Patil, Novel method for fabrication of polyaniline–CdS sensor for H2S gas detection. Measurement 45, 94–100 (2012)

    Article  Google Scholar 

  55. A. Mane, S. Navale, V. Patil, Room temperature NO2 gas sensing properties of DBSA doped PPy–WO3 hybrid nanocomposite sensor. Org. Electron. 19, 15–25 (2015)

    Article  CAS  Google Scholar 

  56. G. Zhu, Q. Zhang, G. Xie, Y. Su, K. Zhao, H. Du, Y. Jiang, Gas sensors based on polyaniline/zinc oxide hybrid film for ammonia detection at room temperature. Chem. Phys. Lett. 665, 147–152 (2016)

    Article  CAS  Google Scholar 

  57. M.V. Kulkarni, S.K. Apte, S.D. Naik, J.D. Ambekar, B.B. Kale, Ink-jet printed conducting polyaniline based flexible humidity sensor. Sens. Actuators B Chem. 178, 140–143 (2013)

    Article  CAS  Google Scholar 

  58. A. Ramaprasad, V. Rao, Chitin–polyaniline blend as humidity sensor. Sens. Actuators B Chem. 148, 117–125 (2010)

    Article  CAS  Google Scholar 

  59. X. Ma, M. Wang, G. Li, H. Chen, R. Bai, Preparation of polyaniline–TiO2 composite film with in situ polymerization approach and its gas-sensitivity at room temperature. Mater. Chem. Phys. 98, 241–247 (2006)

    Article  CAS  Google Scholar 

  60. D.S. Dhawale, R.R. Salunkhe, V.S. Jamadade, T.P. Gujar, C.D. Lokhande, An approach towards the growth of polyaniline nanograins by electrochemical route. Appl. Surf. Sci. 255, 8213–8216 (2009)

    Article  CAS  Google Scholar 

  61. X.B. Yan, Z.J. Han, Y. Yang, B.K. Tay, NO2 gas sensing with polyaniline nanofibers synthesized by a facile aqueous/organic interfacial polymerization. Sens. Actuators B Chem. 123, 107–113 (2007)

    Article  CAS  Google Scholar 

  62. H. Bai, G. Shi, Gas sensors based on conducting polymers. Sensors 7(3), 267–307 (2007)

    Article  CAS  Google Scholar 

  63. A.L. Kukla, A.S. Pavluchenko, Y.M. Shirshov, N.V. Konoshchuk, O.Y. Posudievsky, Application of sensor arrays based on thin films of conducting polymers for chemical recognition of volatile organic solvents. Sens. Actuators B Chem. 135, 541–551 (2009)

    Article  CAS  Google Scholar 

  64. J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhang, X. Shen, F. Wei, Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J. Power Sources 195, 3041–3045 (2010)

    Article  CAS  Google Scholar 

  65. D.-J. Chen, S. Lei, R.-H. Wang, M. Pan, Y.-Q. Chen, Dielectrophoresis carbon nanotube and conductive polyaniline nanofiber NH3 gas sensor. Chin. J. Anal. Chem. 40, 145–149 (2012)

    Article  Google Scholar 

  66. K. Uh, T. Kim, C.W. Lee, J.-M. Kim, A precursor approach to electrospun polyaniline nanofibers for gas sensors. Macromol. Mater. Eng. 301, 1320–1326 (2016)

    Article  CAS  Google Scholar 

  67. H.-D. Zhang, C.-C. Tang, Y.-Z. Long, J.-C. Zhang, R. Huang, J.-J. Li, C.-Z. Gu, High-sensitivity gas sensors based on arranged polyaniline/PMMA composite fibers. Sens. Actuators A 219, 123–127 (2014)

    Article  CAS  Google Scholar 

  68. Q. Nie, Z. Pang, D. Li, H. Zhou, F. Huang, Y. Cai, Q. Wei, Facile fabrication of flexible SiO2/PANI nanofibers for ammonia gas sensing at room temperature. Colloids Surf. A 537, 532–539 (2018)

    Article  CAS  Google Scholar 

  69. Z. Pang, Z. Yang, Y. Chen, J. Zhang, Q. Wang, F. Huang, Q. Wei, A room temperature ammonia gas sensor based on cellulose/TiO2/PANI composite nanofibers. Colloids Surf. A 494, 248–255 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is thankful to IUAC, New Delhi for providing characterization facilities and financial assistance. We are also thankful to Dr. F Singh, Sr. scientist IUAC, New Delhi for useful discussion.

Funding

Financial assistance is provided by IUAC, New Delhi.

Author information

Authors and Affiliations

Authors

Contributions

DSU and SBB synthesized the thin films, characterized them, and performed the experiments. ASD assisted with the analysis and writing of the structural and optical results. The gas sensing analysis was done by RBB and KPG and the overall work was guided by RS.

Corresponding author

Correspondence to Ramphal Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhye, D.S., Dive, A.S., Birajadar, R.B. et al. Low-concentration ammonia gas sensing using polyaniline nanofiber thin film grown by rapid polymerization technique. J Mater Sci: Mater Electron 33, 23016–23029 (2022). https://doi.org/10.1007/s10854-022-09069-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09069-w

Navigation