Nano Research

, Volume 1, Issue 5, pp 420–426 | Cite as

Enhanced ferromagnetism in ZnO nanoribbons and clusters passivated with sulfur

  • Andrés R. Botello-Méndez
  • Florentino López-Urías
  • Mauricio Terrones
  • Humberto Terrones
Open Access
Research Article


Inspired by recent experimental results, the electronic and magnetic properties of sulfur-passivated ZnO clusters and zigzag nanoribbons have been studied using first principles calculations in the framework of the local spin density approximation. In the case of the ZnO nanoribbons, the sulfur atoms or thiol groups were attached in different ways to the zinc or oxygen atoms located at the edges, whereas in clusters, the sulfur atoms were set on the surface, mainly interacting with atoms with low-coordinate number. After an exhaustive atomic relaxation, we found that a magnetic moment emerges in zigzag nanoribbons both with and without sulfur-passivation on the edges. However, the magnitude of the magnetic moment is very sensitive to sulfur passivation. In particular, we found that when sulfur is attached to the zinc atoms in an alternating fashion along the ribbon edges, the magnetic moment is a maximum (1.4 µB/unit cell). In the case of clusters, we found that the Zn15O15 cluster exhibits a high spin moment of 5.5 µB when capped with sulfur atoms. Our calculations indicate that sulfur-passivating of ZnO nanosystems could be responsible for recently observed ferromagnetic responses.


Zinc oxide sulfur magnetism nanoribbons clusters 


  1. [1]
    Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, D. Zener model description of ferromagnetism in zinc blende magnetic semiconductors. Science 2000, 287, 1019–1022.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Sundaresan, A.; Bhargavi, R.; Rangarajan, N.; Siddesh, U.; Rao, C. N. R. Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B 2006 74, 161306.Google Scholar
  3. [3]
    Ronning, C.; Gao, P. X.; Ding, Y.; Wang, Z. L.; Schwen, D. Manganese-doped ZnO nanobelts for spintronics. Appl. Phys. Lett. 2004, 84, 783–785.CrossRefADSGoogle Scholar
  4. [4]
    Rao, C. N. R.; Deepak, F. L. Absence of ferromagnetism in Mn-and Co-doped ZnO. J. Mater. Chem. 2005, 15, 573–578.CrossRefGoogle Scholar
  5. [5]
    Garcia, M. A.; Merino, J. M.; Fernández Pinel, E.; Quesada, A.; de la Venta, J.; Ruíz González, M. L.; Castro, G. R.; Crespo, P.; Llopis, J.; González Calbet, J. M.; Hernando, A. Magnetic properties of ZnO nanoparticles. Nano Lett. 2007, 7, 1489–1494.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Banerjee, S.; Mandal, M.; Gayathri, N.; Sardar, M. Enhancement of ferromagnetism upon thermal annealing in pure ZnO. Appl. Phys. Lett. 2007, 91, 182501.Google Scholar
  7. [7]
    Botello-Méndez, A. R.; López Urías, F.; Terrones, M.; Terrones, H. Unpublished results.Google Scholar
  8. [8]
    Tusche, C.; Meyerheim, H. L.; Kirschner, J. Observation of depolarized ZnO (0001) monolayers: Formation of unreconstructed planar sheets. Phys. Rev. Lett. 2007, 99, 026102.Google Scholar
  9. [9]
    Botello-Méndez, A. R.; López Urías, F.; Terrones, M.; Terrones, H. Magnetic behavior in zinc oxide zigzag nanoribbons. Nano Lett. 2008, 8, 1562–1565.CrossRefPubMedADSGoogle Scholar
  10. [10]
    Botello-Méndez, A. R.; Martínez-Martínez, M. T.; López Urías, F.; Terrones, M.; Terrones, H. Metallic edges in zinc oxide nanoribbons. Chem. Phys. Lett. 2007, 448, 258–263.CrossRefADSGoogle Scholar
  11. [11]
    Claeyssens, F.; Freeman, C. L.; Allan, N. L.; Sun, Y.; Ashfold, M. N. R.; Harding, J. H. Growth of ZnO thin films—Experiment and theory. J. Mater. Chem. 2005, 15, 139–148.CrossRefGoogle Scholar
  12. [12]
    Coey, J. M. D. d0 ferromagnetism. Solid State Sci. 2005, 7, 660–667.CrossRefADSGoogle Scholar
  13. [13]
    Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter. 2002, 14, 2745–2779.CrossRefADSGoogle Scholar
  14. [14]
    Meyer, B.; Marx, D. Density-functional study of the structure and stability of ZnO surfaces. Phys. Rev. B 2003, 67, 035403.Google Scholar
  15. [15]
    Quantum-ESPRESSO is a community project for high quality quantum-simulation software, based on density functional theory, and coordinated by Paolo Giannozzi. See and (Accessed 4 March, 2008).
  16. [16]
    Janotti, A.; Segev, D.; Van de Walle, C. G. Effects of cation d status on the structural and electronic properties of III-nitride and II-oxide wide-band-gap semiconductors. Phys. Rev. B 2006, 74, 045202.Google Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2008

Authors and Affiliations

  • Andrés R. Botello-Méndez
    • 1
  • Florentino López-Urías
    • 1
  • Mauricio Terrones
    • 1
  • Humberto Terrones
    • 1
  1. 1.National Laboratory for Nanoscience and Nanotechnology Research (LINAN), Advanced Materials DepartmentIPICYTS. L. P., MéxicoMéxico

Personalised recommendations