Nano Research

, Volume 1, Issue 5, pp 412–419 | Cite as

Nanotrains and self-assembled two-dimensional arrays built from carboranes linked by hydrogen bonding of dipyridones

  • Takashi Sasaki
  • Jason M. Guerrero
  • Ashley D. Leonard
  • James M. Tour
Open Access
Research Article

Abstract

The strong hydrogen bonding ability of 2-pyridones were exploited to build nanotrains on surfaces. Carborane wheels on axles difunctionalized with 2-pyridone hydrogen bonding units were synthesized and displayed spontaneous formation of linear nanotrains by self-assembly on SiO2 or mica surfaces. Imaging using atomic force microscopy confirmed linear formations with lengths up to 5 µm and heights within the range of the molecular height of the carborance-tipped axles.

Keywords

Nanovehicles nanotrains 2-pyridone hydrogen bonding self-assembly 

Supplementary material

12274_2008_8041_MOESM1_ESM.pdf (1.4 mb)
Supplementary material, approximately 1.44 MB.

References

  1. [1]
    Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 1991, 254, 1312–1319.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Lindsey, J. S. Self-assembly in synthetic routes to molecular devices. Biological principles and chemical perspectives: A review. New J. Chem. 1991, 15, 153–180.Google Scholar
  3. [3]
    Philp, D.; Stoddart, J. F. Self-assembly in natural and unnatural systems. Angew. Chem. Int. Ed. Engl. 1996, 35, 1154–1196.CrossRefGoogle Scholar
  4. [4]
    Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri, M. R. Self-assembling organic nanotubes. Angew. Chem., Int. Ed. 2001, 40, 988–1011.CrossRefGoogle Scholar
  5. [5]
    Miao, Q.; Lefenfeld, M.; Nguyen, T.-Q.; Siegrist, T.; Kloc, C.; Nuckolls, C. Self-assembly and electronics of dipolar linear acenes. Adv. Mater. 2005, 17, 407–412.CrossRefGoogle Scholar
  6. [6]
    Yip, H,-L.; Ma, H.; Jen, A. K.-Y.; Dong, J.; Parviz, B. A. Two-dimensional self-assembly of 1-pyrylphosphonic acid: Transfer of stacks on structured surface. J. Am. Chem. Soc. 2006, 128, 5672–5679.CrossRefPubMedGoogle Scholar
  7. [7]
    Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Jamssen, R. A. J.; Meijer, E. W.; Herwig, P., et. al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 1999, 401, 685–688.CrossRefADSGoogle Scholar
  8. [8]
    van de Craats, A. M.; Stutzmann, N.; Bunk, O.; Nielsen, M. M.; Watson, M.; Müllen, K.; Chanzy, H. D.; Sirringhaus, H.; Friend, R. H. Meso-epitaxial solutiongrowth of self-organizing discotic liquid-crystalline semiconductors. Adv. Mater. 2003, 15, 495–499.CrossRefGoogle Scholar
  9. [9]
    Faccheti, A.; Mushrush, M.; Yoon, M. H.; Hutchison, G. R.; Ratner, M. A.; Marks, T. J. Building blocks for n-type molecular and polymeric electronics. Perfluoroalkylversus alkyl-functionalized oligothiophenes (nT; n = 2–6) Systematics of thin film microstructure, semiconductor performance, and modeling of majority charge injection in field-effect transistors. J. Am. Chem. Soc. 2004, 126, 13859–13874.CrossRefGoogle Scholar
  10. [10]
    Wu, Y.; Li, Y.; Gardner, S.; Ong, B. S. Indolo[3,2-b]carbazole-based thin-film transistors with high mobility and stability. J. Am. Chem. Soc. 2005, 127, 614–618.CrossRefPubMedGoogle Scholar
  11. [11]
    Kautz, H.; van Beek, D. J. M.; Sijbesma, R. P.; Meijer, E. W. Cooperative end-to-end and lateral hydrogen-bonding motifs in supramolecular thermoplastic elastomers. Macromolecules 2006, 39, 4265–4267.CrossRefADSGoogle Scholar
  12. [12]
    Schmidt-Mende, L.; Fehtenkotter A.; Müllen, K.; Moons, E.; Friend, R. H.; Mackenzie, J. D. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 2001, 293, 1119–1122.CrossRefPubMedADSGoogle Scholar
  13. [13]
    Yang, X. N.; van Duren, J. K. J.; Rispens, M. T.; Hummelen, J. C.; Janssen, R. A. J.; Michels, M. A. J.; Loos, J. Crystalline organization of a methanofullerene as used for plastic solar-cell applications. Adv. Mater. 2004, 16, 802–806.CrossRefGoogle Scholar
  14. [14]
    Koert, U.; Harding, M. M.; Lehn, J. M. DNH deoxyribonucleohelicates: Self assembly of oligonucleosidic doublehelical metal complexes. Nature 1990, 346, 339–342.CrossRefPubMedADSGoogle Scholar
  15. [15]
    Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity. Science 1999, 284, 785–788.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Hirschberg, J. H. K. K.; Brunsverld, L.; Ramzi, A.; Vekemans, J. A. J. M.; Sijbesma, R. P.; Meijer, E. W. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. Nature 2000, 407, 167–170.CrossRefPubMedADSGoogle Scholar
  17. [17]
    Percec, V.; Glodde, M.; Bera, T. K.; Miura, Y.; Shiyanovskaya, I.; Singer, K. D.; Balagurusamy, V. S. L.; Heiney, P. A.; Schnell, I.; Rapp, A., et al. Self-organization of supramolecular helical dendrimers into complex electronic materials. Nature 2002, 419, 384–387.CrossRefPubMedADSGoogle Scholar
  18. [18]
    Yamamoto, T.; Fukushima, T.; Yamamoto, Y.; Kosaka, A.; Jin, W.; Ishii, N.; Aida, T. Stabilization of a kinetically favored nanostructure: Surface ROMP of self-assembled conductive nanocoils from a norbornene-appended hexa-peri-hexabenzocoronene. J. Am. Chem. Soc. 2006, 128, 14337–14340.CrossRefPubMedGoogle Scholar
  19. [19]
    Jonkheijm, P.; Miura, A.; Zdanowska, M.; Hoeben, F. J. M.; Feyter, S. D.; Schenning, A. P. H. J.; de Schryver, F. C.; Meijer, E. W. π-Conjugated oligo-(ρ-phenylenevinylene) rosettes and their tubular self-assembly. Angew. Chem. Int. Ed. 2004, 43, 74–78.CrossRefGoogle Scholar
  20. [20]
    Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; McRee, D. E.; Khazanovich, N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature, 1993, 366, 324–327.CrossRefPubMedADSGoogle Scholar
  21. [21]
    Yan, D. Y.; Zhou, Y. F.; Hou, J. Supramolecular self-assembly of macroscopic tubes. Science 2004, 303, 65–67.CrossRefPubMedADSGoogle Scholar
  22. [22]
    Baxter, P. N. W.; Lehn, J. M.; Fischer, J.; Youinou, M. Self-assembly and structure of a 3 × 3 inorganic grid from nine silver ions and six ligand components. Angew. Chem. Int. Ed. Engl. 1994, 33, 2284–2287.CrossRefGoogle Scholar
  23. [23]
    Weissbuch, I.; Baxter, P. N. W.; Cohen, S.; Cohen, H.; Kjaer, K.; Howes, P. B.; Als-Nielsen J.; Hanan, G. S.; Schubert, U. S.; Lehn, J, M., et al. Self-assembly at the air-water interface: In-situ preparation of thin films of metal ion grid architectures. J. Am. Chem. Soc. 1998, 120, 4850–4860.CrossRefGoogle Scholar
  24. [24]
    Ruben, M.; Rojo, J.; Romero-Saluguero, F. J.; Uppadine, L. H.; Lehn, J. M. Grid-type metal ion architectures: Functional metallosupramolecular arrays. Angew. Chem., Int. Ed. 2004, 43, 3644–3662.CrossRefGoogle Scholar
  25. [25]
    Zerowski, J. A.; Whitesides, G. M. Steric control of secondary, solid-state architecture in 1:1 complexes of melamines and barbiturates that crystallize as crinkled tapes. J. Am. Chem. Soc. 1994, 116, 4298–4304.CrossRefGoogle Scholar
  26. [26]
    Ranganathan, A.; Pedireddi, V. R.; Rao, C. N. R. Hydrothermal synthesis of organic channel structures: 1:1 hydrogen-bonded adducts of melamine with cyanuric and trithiocyanuric acids. J. Am. Chem. Soc. 1999, 121, 1752–1753.CrossRefGoogle Scholar
  27. [27]
    Prins, L. J.; de Jong, F.; Timmerman, P.; Reinhoudt, D. N. An enantiomerically pure hydrogen-bonded assembly. Nature 2000, 408, 181–184.CrossRefPubMedADSGoogle Scholar
  28. [28]
    Whitesides, G. M.; Simanek, E. E.; Mathias, J. P.; Seto, C. T.; Chin, D. N.; Mammen, M.; Gordon, D. M. Noncovalent synthesis: Using physical-organic chemistry to make aggregates. Acc. Chem. Res. 1995, 28, 37–44.CrossRefGoogle Scholar
  29. [29]
    Highfill, M. L.; Chandrasekaran, A.; Lynch, D. E.; Hamilton, D. A. Superstructural variety from an alkylated triazine: Formation of one-dimensional hydrogen-bonded arrays or cyclic rosettes. Cryst. Growth Des. 2002, 2, 15–20.CrossRefGoogle Scholar
  30. [30]
    Kolotuchin, S. V.; Zimmerman, S. C. Self-assembly mediated by the donor-donor-acceptor·acceptoracceptor-donor (DDA·AAD) hydrogen-bonding motif: Formation of a robust hexameric aggregate. J. Am. Chem. Soc. 1998, 120, 9092–9093.CrossRefGoogle Scholar
  31. [31]
    Marsh, A.; Silvestri, M.; Lehn, J. M. Self-complementary hydrogen bonding heterocycles designed for the enforced self-assembly into supramolecular macrocycles. Chem. Commun. 1996, 1527–1528.Google Scholar
  32. [32]
    Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: Oxford, 1997.Google Scholar
  33. [33]
    Atwood, J. L.; Davies, J. E. D.; MacNicol, D. D.; Vögtle, F.; Lehn, J.-M. Comprehensive Supramolecular Chemistry; Pergamon: New York, 1996.Google Scholar
  34. [34]
    Simard, M.; Su, D.; Wuest, J. D. Use of hydrogen bonds to control molecular aggregation. Self-assembly of threedimensional networks with large chambers. J. Am. Chem. Soc. 1991, 113, 4696–4698.CrossRefGoogle Scholar
  35. [35]
    Edwards, M. R.; Jones, W.; Motherwell, W. D. S. Influence of dicarboxylic acid structure on tape networks in cocrystals of 2-pyridone. Cryst. Eng. 2002, 5, 25–36.CrossRefGoogle Scholar
  36. [36]
    Ducharme, Y.; Wuest, J. D. Use of hydrogen bonds to control molecular aggregation: Extensive, selfcomplementary arrays of donors and acceptors. J. Org. Chem. 1988, 53, 5787–5789.CrossRefGoogle Scholar
  37. [37]
    Gallant, M.; Viet, M. T. P.; Wuest, J. D. Use of hydrogen bonds to control molecular aggregation: Association of dipyridones joined by flexible spacers. J. Org. Chem. 1991, 56, 2284–2286.CrossRefGoogle Scholar
  38. [38]
    Heinz, R.; Rabe, J. P.; Meister, W.-V.; Hoffmann, S. Structure and dynamics of two-dimensional adlayers of a 2-pyridone smectogen studied by STM. Thin Solid Films 1995, 264, 246–249.CrossRefADSGoogle Scholar
  39. [39]
    Thwaite, S.; Schier, A.; Schmidbaur, H. The auration of 2-hydroxy-pyridine (2-pyridone): Preparative and structural studies and a comparison with reactions of related aliphatic O,N-donors. Inorg. Chim. Acta. 2004, 357, 1549–1557.CrossRefGoogle Scholar
  40. [40]
    Miyabayashi, T.; Hara, T.; Yamagata, T.; Mashima, K. Chlorido(6-diphenylphosphino-2-pyridonato-k2P,N)(6-diphenylphosphino-2-hydroxypyridine-k2P,N)hydrido iridium(III) chloroform 1.896-solvate. Acta Crystallogr. E 2007, 63, m576–m578.CrossRefGoogle Scholar
  41. [41]
    Nichol, G. S.; Clegg, W. Complexes of 6-methyl-2-pyridone with the alkaline earth metals magnesium, strontium and barium: Synthesis and structural characterisation. Inorg. Chim. Acta 2006, 359, 3474–3480.CrossRefGoogle Scholar
  42. [42]
    Murugavel, R.; Kuppuswamy, S.; Boomishankar, R.; Steiner, A. Hierarchical structures built from a molecular zinc phosphate core. Angew. Chem. Int. Ed. 2006, 45, 5536–5540.CrossRefGoogle Scholar
  43. [43]
    Chuchuryukin, A. V.; Chase, P. A.; Mills, A. M.; Lutz, M.; Spek, A. L.; van Klink, G. P. M.; van Koten, G. Hydroxyand mercaptopyridine pincer platinum and palladium complexes generated by silver-free halide abstraction. Inorg. Chem. 2006, 5, 2045–2054.CrossRefGoogle Scholar
  44. [44]
    Barth, J. V.; Constantini, G.; Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 2005, 437, 671–679.CrossRefPubMedADSGoogle Scholar
  45. [45]
    Barth, J. V.; Weckesser, J.; Cai, C.; Günter, P.; Bürgi, L.; Jeandupeux O.; Kern, K. Building supramolecular nanostructures at surfaces by hydrogen bonding. Angew. Chem. Int. Ed. 2000, 39, 1230–1234.CrossRefGoogle Scholar
  46. [46]
    West, P.; Ross. A. An Introduction to Atomic Force Microscopy Modes. Pacific Nanotoechnology, Inc. http://www.pacificnanotech.com/afm-modes_materialproperty-modes.html (accessed 2006)
  47. [47]
    Takamatsu, D.; Yamakoshi, Y.; Fukui, K. Control of probe function in noncontact atomic force microscopy using photo-responsive molecular tip. Surf. Sci. Nanotech. 2006, 4, 249–253.CrossRefGoogle Scholar
  48. [48]
    Marcus, R. B.; Ravi, T. S.; Gmitter, T.; Chin, K.; Orvis, W. J.; Ciarlo, D. R.; Hunt, C. E.; Trujillo, J. Formation of silicon tips with <1 nm radius. Appl. Phys. Lett. 1990, 56, 236–238.CrossRefADSGoogle Scholar
  49. [49]
    HI-RES tips with tip radius of ∼1 nm are commercially available from MikroMasch, Inc., http://www.spmtips.com (accessed 21 October, 2008)
  50. [50]
    Shirai, Y.; Osgood, A. J.; Zhao, Y.; Kelly, K. F.; Tour, J. M. Directional control in thermally driven single-molecule nanocars. Nano Lett. 2005, 5, 2330 2334.CrossRefPubMedGoogle Scholar
  51. [51]
    Shirai, Y.; Osgood, A. J.; Zhao, Y.; Yao, Y.; Saudan, L.; Yang, H.; Yu-Hung, C.; Sasaki, T.; Morin, J.-F.; Guerrero, J. M.; Kelly, K. F.; Tour, J. M. Surface-rolling molecules. J. Am. Chem. Soc. 2006, 128, 4854–4864.CrossRefPubMedGoogle Scholar
  52. [52]
    Shirai Y.; Morin, J.-F.; Sasaki, T.; Guerrero, J. M.; Tour, J. M. Recent progress on nanovehicles. Chem. Soc. Rev. 2006, 35, 1043–1055.CrossRefPubMedGoogle Scholar
  53. [53]
    Morin, J.-F.; Shirai, Y.; Tour, J. M. En route to a motorized nanocar. Org. Lett. 2006, 8, 1713–1716.CrossRefPubMedGoogle Scholar
  54. [54]
    Sasaki, T.; Tour, J. M. Synthesis of a dipolar nanocar. Tetrahedron Lett. 2007, 48, 5821–5824.CrossRefGoogle Scholar
  55. [55]
    Sasaki, T.; Morin, J.-F.; Lu, M.; Tour, J. M. Synthesis of a single-molecule nanotruck. Tetrahedron Lett. 2007, 48, 5817–5820.CrossRefGoogle Scholar
  56. [56]
    Morin, J.-F.; Sasaki, T.; Shirai. Y.; Guerrero J. M.; Tour, J. M. Synthetic routes toward carborane-wheeled nanocars. J. Org. Chem. 2007, 72, 9481–9490.CrossRefPubMedGoogle Scholar
  57. [57]
    Sasaki, T, Osgood, A. J.; Alemany, L. B.; Kelly, K. F.; Tour, J. M. Synthesis of a nanocar with an angled chassis: Towards circling movement. Org. Lett. 2008, 10, 229–232.CrossRefPubMedGoogle Scholar
  58. [58]
    Sasaki, T.; Tour, J. M. Synthesis of a new photoactive nanovehicle: Nanoworm. Org. Lett. 2008, 10, 897–900.CrossRefPubMedGoogle Scholar
  59. [59]
    Sasaki, T.; Osgood, A. J.; Kiappes, J. L. Kelly, K. F.; Tour, J. M. Synthesis of a porphyrin-fullerene pinwheel. Org. Lett. 2008, 10, 1377–1380.CrossRefPubMedGoogle Scholar
  60. [60]
    Sasaki, T.; Guerrero J. M.; Tour, J. M. The assembly line: Self-assembling nanocars. Tetrahedron 2008, 64, 8522–8529.CrossRefGoogle Scholar
  61. [61]
    Morgan, D. A.; Sloan, J.; Green, M. L. H. Direct imaging of o-carborane molecules within single walled carbon nanotubes. Chem. Commun. 2002, 2442–2443.Google Scholar
  62. [62]
    Bodwell, G. J.; Miller, D. O.; Vermeij, R. J. Nonplanar aromatic compounds 6. [2]Paracyclo[2](2,7)pyrenophane. A novel strained cyclophane and a first step on the road to a “Vögtle” belt. Org. Lett. 2001, 3, 2093–2096.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2008

Authors and Affiliations

  • Takashi Sasaki
    • 1
  • Jason M. Guerrero
    • 1
  • Ashley D. Leonard
    • 1
  • James M. Tour
    • 1
  1. 1.Department of Chemistry, Department of Mechanical Engineering and Materials ScienceRice UniversityHoustonUSA

Personalised recommendations