Skip to main content
Log in

Direct self-assembly of CTAB-capped Au nanotriangles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Densely packed and ordered “suprastructures” are new types of nanomaterials exhibiting broad applications. The direct self-assembly of cetyltrimethylammonium bromide (CTAB)-capped gold nanotriangles to form “suprastructures” was systematically investigated by varying the temperature and tilt angle of the silicon wafer used in the assembly process. Under optimal conditions, nanotriangles form into regular patterns, maintain their integrity, and form edge-to-edge, point-to-point, and face-to-face connections to form ordered “suprastructures” within an area of hundreds of square microns, achieving a high level of regularity. The formation of the “suprastructures” under optimal conditions could be mainly attributed to the complex balance between multiple temperature-dependent factors, including the atom diffusion rate, solvent evaporation rate, self-assembly rate, and the time for which the nanoparticle stays in the wet medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grunes, J.; Zhu, J.; Anderson, E. A.; Somorjai, G. A. Ethylene hydrogenation over platinum nanoparticle array model catalysts fabricated by electron beam lithography: Determination of active metal surface area. J. Phys. Chem. B 2002, 106, 11463–11468.

    Article  Google Scholar 

  2. Maier, S. A.; Kik, P. G.; Atwater, H. A.; Meltzer, S.; Harel, E.; Koel, B. E.; Requicha, A. A. G. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2003, 2, 229–232.

    Article  Google Scholar 

  3. Zayats, M.; Kharitonov, A. B.; Pogorelova, S. P.; Lioubashevski, O.; Katz, E.; Willner, I. Probing photoelectrochemical processes in Au-CdS nanoparticle arrays by surface plasmon resonance: Application for the detection of acetylcholine esterase inhibitors. J. Am. Chem. Soc. 2003, 125, 16006–16014.

    Article  Google Scholar 

  4. Fu, Q.; Sheng, Y. P.; Tang, H. J.; Zhu, Z. N.; Ruan, M. B.; Xu, W. L.; Zhu, Y. T.; Tang, Z. Y. Growth mechanism deconvolution of self-limiting supraparticles based on microfluidic system. ACS Nano 2015, 9, 172–179.

    Article  Google Scholar 

  5. Gao, Y.; Tang, Z. Y. Design and application of inorganic nanoparticle superstructures: Current status and future challenges. Small 2011, 7, 2133–2146.

    Article  Google Scholar 

  6. Xia, Y. S.; Nguyen, T. D.; Yang, M.; Lee, B.; Santos, A.; Podsiadlo, P.; Tang, Z. Y.; Glotzer, S. C.; Kotov, N. A. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nat. Nanotechnol. 2011, 6, 580–587.

    Article  Google Scholar 

  7. Xia, Y. S.; Tang, Z. Y. Monodisperse hollow supraparticles via selective oxidation. Adv. Funct. Mater. 2012, 22, 2585–2593.

    Article  Google Scholar 

  8. Xiong, Y. S.; Deng, K.; Jia, Y. Y.; He, L. C.; Chang, L.; Zhi, L. J.; Tang, Z. Y. Crucial role of anions on arrangement of Cu2S nanocrystal superstructures. Small 2014, 10, 1523–1528.

    Article  Google Scholar 

  9. Ming, T.; Kou, X. S.; Chen, H. J.; Wang, T.; Tam, H. L.; Cheah, K. W.; Chen, J. Y.; Wang, J. F. Ordered gold nanostructure assemblies formed by droplet evaporation. Angew. Chem. 2008, 120, 9831–9836.

    Article  Google Scholar 

  10. Talapin, D. V.; Shevchenko, E. V.; Bodnarchuk, M. I.; Ye, X. C.; Chen, J.; Murray, C. B. Quasicrystalline order in selfassembled binary nanoparticle superlattices. Nature 2009, 461, 964–967.

    Article  Google Scholar 

  11. Bishop, K. J. M.; Grzybowski, B. A. “Nanoions”: Fundamental properties and analytical applications of charged nanoparticles. ChemPhysChem 2007, 8, 2171–2176.

    Article  Google Scholar 

  12. Guerrero-Martínez, A.; Pérez-Juste, J.; Carbó-Argibay, E.; Tardajos, G.; Liz-Marzán, L. M. Gemini-surfactant-directed self-assembly of monodisperse gold nanorods into standing superlattices. Angew. Chem., Int. Ed. 2009, 48, 9484–9488.

    Article  Google Scholar 

  13. Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O'Brien, S.; Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 2006, 439, 55–59.

    Article  Google Scholar 

  14. Talapin, D. V.; Lee, J.-S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.

    Article  Google Scholar 

  15. Kalsin, A. M.; Grzybowski, B. A. Controlling the growth of “ionic” nanoparticle supracrystals. Nano Lett. 2007, 7, 1018–1021.

    Article  Google Scholar 

  16. Kalsin, A. M.; Fialkowski, M.; Paszewski, M.; Smoukov, S. K.; Bishop, K. J. M.; Grzybowski, B. A. Electrostatic selfassembly of binary nanoparticle crystals with a diamondlike lattice. Science 2006, 312, 420–424.

    Article  Google Scholar 

  17. Kowalczyk, B.; Kalsin, A. M.; Orlik, R.; Bishop, K. J. M.; Patashinskii, A. Z.; Mitus, A.; Grzybowski, B. A. Size selection during crystallization of oppositely charged nanoparticles. Chem.—Eur. J. 2009, 15, 2032–2035.

    Article  Google Scholar 

  18. Park, S. Y.; Lytton-Jean, A. K. R.; Lee, B.; Weigand, S.; Schatz, G. C.; Mirkin, C. A. DNA-programmable nanoparticle crystallization. Nature 2008, 451, 553–556.

    Article  Google Scholar 

  19. Walker, D. A.; Browne, K. P.; Kowalczyk, B.; Grzybowski, B. A. Self-assembly of nanotriangle superlattices facilitated by repulsive electrostatic interactions. Angew. Chem., Int. Ed. 2010, 49, 6760–6763.

    Article  Google Scholar 

  20. Yu, Q. M.; Guan, P.; Qin, D.; Golden, G.; Wallace, P. M. Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett. 2008, 8, 1923–1928.

    Article  Google Scholar 

  21. Gopinath, A.; Boriskina, S. V.; Premasiri, W. R.; Ziegler, L.; Reinhard, B. M.; Dal Negro, L. Plasmonic nanogalaxies: Multiscale aperiodic arrays for surface-enhanced Raman sensing. Nano Lett 2009, 9, 3922–3929.

    Article  Google Scholar 

  22. Diebold, E. D.; Peng, P.; Mazur, E. Isolating surfaceenhanced Raman scattering hot spots using multiphoton lithography. J. Am. Chem. Soc. 2009, 131, 16356–16357.

    Article  Google Scholar 

  23. Yap, F. L.; Thoniyot, P.; Krishnan, S.; Krishnamoorthy, S. Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers. ACS Nano 2012, 6, 2056–2070.

    Article  Google Scholar 

  24. Fang, J. X.; Du, S. Y.; Lebedkin, S.; Li, Z. Y.; Kruk, R.; Kappes, M.; Hahn, H. Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy. Nano Lett. 2010, 10, 5006–5013.

    Article  Google Scholar 

  25. Cecchini, M. P.; Turek, V. A.; Paget, J.; Kornyshev, A. A.; Edel, J. B. Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nat. Mater. 2013, 12, 165–171.

    Article  Google Scholar 

  26. Bogaerts, W.; Wiaux, V.; Dumon, P.; Taillaert, D.; Wouters, J.; Beckx, S.; Van Campenhout, J.; Luyssaert, B.; Van Thourhout, D.; Baets, R. Large-scale production techniques for photonic nanostructures. In Proceedings of the SPIE 5225, Nano- and Micro-Optics for Information Systems, San Diego, California, USA, 2003, pp 101–112.

    Chapter  Google Scholar 

  27. Viarbitskaya, S.; Teulle, A.; Marty, R.; Sharma, J.; Girard, C.; Arbouet, A.; Dujardin, E. Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms. Nat. Mater. 2013, 12, 426–432.

    Article  Google Scholar 

  28. Huang, J.-S.; Callegari, V.; Geisler, P.; Brüning, C.; Kern, J.; Prangsma, J. C.; Wu, X. F.; Feichtner, T.; Ziegler, J.; Weinmann, P. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nat. Commun. 2010, 1, 150.

    Article  Google Scholar 

  29. Lee, Y. H.; Lee, C. K.; Tan, B. R.; Tan, J. M. R.; Phang, I. Y.; Ling, X. Y. Using the Langmuir–Schaefer technique to fabricate large-area dense SERS-active Au nanoprism monolayer films. Nanoscale 2013, 5, 6404–6412.

    Article  Google Scholar 

  30. Scarabelli, L.; Coronado-Puchau, M.; Giner-Casares, J. J.; Langer, J.; Liz-Marzán, L. M. Monodisperse gold nanotriangles: Size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering. ACS Nano 2014, 8, 5833–5842.

    Article  Google Scholar 

  31. Boyack, R.; Le Ru, E. C. Investigation of particle shape and size effects in SERS using T-matrix calculations. Phys. Chem. Chem. Phys. 2009, 11, 7398–7405.

    Article  Google Scholar 

  32. Nikoobakht, B.; Wang, J. P.; El-Sayed, M. A. Surfaceenhanced Raman scattering of molecules adsorbed on gold nanorods: Off-surface plasmon resonance condition. Chem. Phys. Lett. 2002, 366, 17–23.

    Article  Google Scholar 

  33. Chaney, S. B.; Shanmukh, S.; Dluhy, R. A.; Zhao, Y.-P. Aligned silver nanorod arrays produce high sensitivity surfaceenhanced Raman spectroscopy substrates. App. Phys. Lett. 2005, 87, 031908.

    Article  Google Scholar 

  34. Nie, S.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.

    Article  Google Scholar 

  35. Hao, E. C.; Schatz, G. C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 2004, 120, 357–366.

    Article  Google Scholar 

  36. Sau, T. K.; Murphy, C. J. Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes. Langmuir 2005, 21, 2923–2929.

    Article  Google Scholar 

  37. Sun, M. J.; Ran, G. J.; Fu, Q.; Xu, W. L. The effect of iodide on the synthesis of gold nanoprisms. J. Exp. Nanosci. 2015, 10, 1309–1318.

    Article  Google Scholar 

  38. Ha, T. H.; Koo, H.-J.; Chung, B. H. Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide ions. J. Phys. Chem. C 2007, 111, 1123–1130.

    Article  Google Scholar 

  39. DuChene, J. S.; Niu, W. X.; Abendroth, J. M.; Sun, Q.; Zhao, W. B.; Huo, F. W.; Wei, W. D. Halide anions as shapedirecting agents for obtaining high-quality anisotropic gold nanostructures. Chem. Mater. 2013, 25, 1392–1399.

    Article  Google Scholar 

  40. Xu, W.; Sandor, M. T.; Yu, Y.; Ke, H.-B.; Zhang, H.-P.; Li, M.-Z.; Wang, W.-H.; Liu, L.; Wu, Y. Evidence of liquid–liquid transition in glass-forming La50Al35Ni15 melt above liquidus temperature. Nat. Commun. 2015, 6, 7696.

    Article  Google Scholar 

  41. Jakubczyk, D.; Zientara, M.; Kolwas, K.; Kolwas, M. Temperature dependence of evaporation coefficient for water measured in droplets in nitrogen under atmospheric pressure. J. Atmos. Sci. 2007, 64, 996–1004.

    Article  Google Scholar 

  42. Jones, C. A. R.; Liang, L.; Lin, D.; Jiao, Y.; Sun, B. The spatial-temporal characteristics of type I collagen-based extracellular matrix. Soft Matter 2014, 10, 8855–8863.

    Article  Google Scholar 

  43. Cintron, T., Jr. Evaporation rate of water and it’s relation to temperature [Online]. 2005. http://tuhsphysics.ttsd.k12.or.us/Research/IB05/Cintron/tonycintronres.htm#data (accessed Feb 22, 2016).

    Google Scholar 

  44. Pileni, M.; Lalatonne, Y.; Ingert, D.; Lisiecki, I.; Courty, A. Self assemblies of nanocrystals: Preparation, collective properties and uses. Faraday Discuss. 2004, 125, 251–264.

    Article  Google Scholar 

  45. Liz-Marzán, L. M.; Mulvaney, P. The assembly of coated nanocrystals. J. Phys. Chem. B 2003, 107, 7312–7326.

    Article  Google Scholar 

  46. Lin, X. M.; Parthasarathy, R.; Jaeger, H. M. Direct patterning of self-assembled nanocrystal monolayers by electron beams. App. Phys. Lett. 2001, 78, 1915–1917.

    Article  Google Scholar 

  47. Wang, Z. L. Transmission electron microscopy of shapecontrolled nanocrystals and their assemblies. J. Phys. Chem. B 2000, 104, 1153–1175.

    Article  Google Scholar 

  48. Adams, M.; Dogic, Z.; Keller, S. L.; Fraden, S. Entropically driven microphase transitions in mixtures of colloidal rods and spheres. Nature 1998, 393, 349–352.

    Article  Google Scholar 

  49. Whitesides, G. M.; Boncheva, M. Beyond molecules: Selfassembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci. USA 2002, 99, 4769–4774.

    Article  Google Scholar 

  50. van Blaaderen, A. Colloids under external control. MRS Bull. 2004, 29, 85–90.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weilin Xu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Q., Ran, G. & Xu, W. Direct self-assembly of CTAB-capped Au nanotriangles. Nano Res. 9, 3247–3256 (2016). https://doi.org/10.1007/s12274-016-1203-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1203-x

Keywords

Navigation