Nano Research

, Volume 1, Issue 4, pp 321–332 | Cite as

Imaging electronic structure of carbon nanotubes by voltage-contrast scanning electron microscopy

  • Aravind Vijayaraghavan
  • Sabine Blatt
  • Christoph Marquardt
  • Simone Dehm
  • Raghav Wahi
  • Frank Hennrich
  • Ralph Krupke
Open Access
Research Article

Abstract

We introduce voltage-contrast scanning electron microscopy (VC-SEM) for visual characterization of the electronic properties of single-walled carbon nanotubes. VC-SEM involves tuning the electronic band structure and imaging the potential profi le along the length of the nanotube. The resultant secondary electron contrast allows to distinguish between metallic and semiconducting carbon nanotubes and to follow the switching of semiconducting nanotube devices, as confi rmed by in situ electrical transport measurements. We demonstrate that high-density arrays of individual nanotube devices can be rapidly and simultaneously characterized. A leakage current model in combination with fi nite element simulations of the device electrostatics is presented in order to explain the observed contrast evolution of the nanotube and surface electrodes. This work serves to fill a void in electronic characterization of molecular device architectures.

Keywords

Carbon nanotubes electronic properties voltage-contrast scanning electron microscopy electrostatics 

Supplementary material

12274_2008_8034_MOESM1_ESM.pdf (1.3 mb)
Supplementary material, approximately 1.28 MB.
12274_2008_8034_MOESM1_ESM.zip (14.8 mb)
Supplementary material, approximately 14.7 MB.

References

  1. [1]
    McEuen, P. L. Single-wall carbon nanotubes. Phys. World 2000, 13, 31–36.Google Scholar
  2. [2]
    Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Electronic-structure of graphene tubules based on C60. Phys. Rev. B 1992, 46, 1804–1811.CrossRefADSGoogle Scholar
  3. [3]
    Oron-Carl, M.; Hennrich, F.; Kappes, M. M.; Lohneysen, H. V.; Krupke, R. On the electron-phonon coupling of individual single-walled carbon nanotubes. Nano Lett. 2005, 5, 1761–1767.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Qian, H. H.; Gokus, T.; Anderson, N.; Novotny, L.; Meixner, A. J.; Hartschuh, A. Near-field imaging and spectroscopy of electronic states in single-walled carbon nanotubes. Phys. Status Solidi B 2006, 243, 3146–3150.CrossRefADSGoogle Scholar
  5. [5]
    Venema, L. C.; Janssen, J. W.; Buitelaar, M. R.; Wildoer, J. W. G.; Lemay, S. G.; Kouwenhoven, L. P.; Dekker, C. Spatially resolved scanning tunneling spectroscopy on single-walled carbon nanotubes. Phys. Rev. B 2000, 62, 5238–5244.CrossRefADSGoogle Scholar
  6. [6]
    Wildoer, J. W. G.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.; Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 1998, 391, 59–62.CrossRefADSGoogle Scholar
  7. [7]
    Jiang, H.; Nasibulin, A. G.; Brown, D. P.; Kauppinen, E. I. Unambiguous atomic structural determination of singlewalled carbon nanotubes by electron diffraction. Carbon 2007, 45, 662–667.CrossRefGoogle Scholar
  8. [8]
    Yaish, Y.; Park, J. Y.; Rosenblatt, S.; Sazonova, V.; Brink, M.; McEuen, P. L. Electrical nanoprobing of semiconducting carbon nanotubes using an atomic force microscope. Phys. Rev. Lett. 2004, 92, 046401.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Bachtold, A.; Fuhrer, M. S.; Plyasunov, S.; Forero, M.; Anderson, E. H.; Zettl, A.; McEuen, P. L. Scanned probe microscopy of electronic transport in carbon nanotubes. Phys. Rev. Lett. 2000, 84, 6082–6085.CrossRefPubMedADSGoogle Scholar
  10. [10]
    Seiler, H. Secondary electron emission in the scanning electron microscope. J. Appl. Phys. 1983, 54, R1–R18.CrossRefADSGoogle Scholar
  11. [11]
    Homma, Y.; Suzuki, S.; Kobayashi, Y.; Nagase, M.; Takagi, D. Mechanism of bright selective imaging of singlewalled carbon nanotubes on insulators by scanning electron microscopy. Appl. Phys. Lett. 2004, 84, 1750–1752.CrossRefADSGoogle Scholar
  12. [12]
    Brintlinger, T.; Chen, Y. F.; Durkop, T.; Cobas, E.; Fuhrer, M. S.; Barry, J. D.; Melngailis, J. Rapid imaging of nanotubes on insulating substrates. Appl. Phys. Lett. 2002, 81, 2454–2456.CrossRefADSGoogle Scholar
  13. [13]
    Zhang, R. Y.; Wei, Y.; Nagahara, L. A.; Amlani, I.; Tsui, R. K. The contrast mechanism in low voltage scanning electron microscopy of single-walled carbon nanotubes. Nanotechnology 2006, 17, 272–276.CrossRefADSGoogle Scholar
  14. [14]
    Vijayaraghavan, A.; Kanzaki, K.; Suzuki, S.; Kobayashi, Y.; Inokawa, H.; Ono, Y.; Kar, S.; Ajayan, P. M. Metal semiconductor transition in single-walled carbon nanotubes induced by low-energy electron irradiation. Nano Lett. 2005, 5, 1575–1579.CrossRefPubMedADSGoogle Scholar
  15. [15]
    Marquardt, C. W.; Dehm, S.; Vijayaraghavan, A.; Blatt, S.; Hennrich, F.; Krupke, R. Reversible metal-insulator transitions in metallic single-walled carbon nanotubes. Nano Lett. 2008, 8, 2767–2772.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Pfeiffer, H. C.; Langner, G. O.; Stickel, W.; Simpson, R. A. Contactless electrical testing of large area specimens using electron beams. J. Vac. Sci. Tech. 1981, 19, 1014–1018.CrossRefADSGoogle Scholar
  17. [17]
    Buzzo, M.; Ciappa, M.; Millan, J.; Godignon, P.; Fichtner, W. Two-dimensional dopant imaging of silicon carbide devices by secondary electron potential contrast. Microelectron. Eng. 2007, 84, 413–418.CrossRefGoogle Scholar
  18. [18]
    Croitoru, M. D.; Bertsche, G.; Kern, D. P.; Burkhardt, C.; Bauerdick, S.; Sahakalkan, S.; Roth, S. Visualization and in situ contacting of carbon nanotubes in a scanning electron microscope. J. Vac. Sci. Tech. B 2005, 23, 2789–2792.CrossRefGoogle Scholar
  19. [19]
    Jesse, S.; Guillorn, M. A.; Ivanov, I. N.; Puretzky, A. A.; Howe, J. Y.; Britt, P. F.; Geohegan, D. B. In situ electric-field-induced contrast imaging of electronic transport pathways in nanotube-polymer composites. Appl. Phys. Lett. 2006, 89, 013114.CrossRefADSGoogle Scholar
  20. [20]
    Hennrich, F.; Krupke, R.; Lebedkin, S.; Arnold, K.; Fischer, R.; Resasco, D. E.; Kappes, M. Raman spectroscopy of individual single-walled carbon nanotubes from various sources. J. Phys. Chem. B 2005, 109, 10567–10573.CrossRefPubMedGoogle Scholar
  21. [21]
    Arnold, K.; Hennrich, F.; Krupke, R.; Lebedkin, S.; Kappes, M. M. Length separation studies of single walled carbon nanotube dispersions. Phys. Status Solidi B 2006, 243, 3073–3076.CrossRefADSGoogle Scholar
  22. [22]
    Vijayaraghavan, A.; Blatt, S.; Weissenberger, D.; Oron-Carl, M.; Hennrich, F.; Gerthsen, D.; Hahn, H.; Krupke, R. Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Lett. 2007, 7, 1556–1560.CrossRefPubMedADSGoogle Scholar
  23. [23]
    Mann, D.; Javey, A.; Kong, J.; Wang, Q.; Dai, H. J. Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts. Nano Lett. 2003, 3, 1541–1544.CrossRefADSGoogle Scholar
  24. [24]
    www.pdesolutions.com.Google Scholar
  25. [25]
    Konrad, A.; Graovac, M. The finite element modeling of conductors and floating potentials. IEEE T. Magn. 1996, 32, 4329–4331.CrossRefADSGoogle Scholar
  26. [26]
    Jaksch, H. Zeiss NTS GmbH. Private communication.Google Scholar
  27. [27]
    Wells, O. C. Scanning electron microscopy; McGraw-Hill: New York, 1974.Google Scholar
  28. [28]
    Martel, R.; Derycke, V.; Lavoie, C.; Appenzeller, J.; Chan, K. K.; Tersoff, J.; Avouris, P. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett. 2001, 87, 256805.CrossRefPubMedADSGoogle Scholar
  29. [29]
    Jarillo-Herrero, P.; Sapmaz, S.; Dekker, C.; Kouwenhoven, L. P.; van der Zant, H. S. J. Electron-hole symmetry in a semiconducting carbon nanotube quantum dot. Nature 2004, 429, 389–392.CrossRefPubMedADSGoogle Scholar
  30. [30]
    Tersoff, J. Contact resistance of carbon nanotubes. Appl. Phys. Lett. 1999, 74, 2122–2124.CrossRefADSGoogle Scholar
  31. [31]
    White, C. T.; Todorov, T. N. Carbon nanotubes as long ballistic conductors. Nature 1998, 393, 240–242.CrossRefADSGoogle Scholar
  32. [32]
    Krupke, R.; Malik, S.; Weber, H. B.; Hampe, O.; Kappes, M. M.; von Lohneysen, H. Patterning and visualizing self-assembled monolayers with low-energy electrons. Nano Lett. 2002, 2, 1161–1164.CrossRefADSGoogle Scholar
  33. [33]
    Kanaya, K.; Okayama, S. Penetration and energy-loss theory of electrons in solid targets. J. Phys. D: Appl. Phys. 1972, 5, 43–58.CrossRefADSGoogle Scholar
  34. [34]
    Anderson, N.; Hartschuh, A.; Novotny, L. Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy. Nano Lett. 2007, 7, 577–582.CrossRefPubMedADSGoogle Scholar
  35. [35]
    Antonov, R. D.; Johnson, A. T. Subband population in a single-wall carbon nanotube diode. Phys. Rev. Lett. 1999, 83, 3274–3276.CrossRefADSGoogle Scholar
  36. [36]
    John, D. L.; Castro, L. C.; Pereira, P. J. S.; Pulfrey, D. L. A Schrödinger-Poisson solver for modeling carbon nanotube FETs. Nanotechnology 2004, 3, 65–68.Google Scholar
  37. [37]
    Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Carbon nanotubes The route toward applications. Science 2002, 297, 787–792.CrossRefPubMedADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Aravind Vijayaraghavan
    • 1
  • Sabine Blatt
    • 1
    • 2
  • Christoph Marquardt
    • 1
    • 2
  • Simone Dehm
    • 1
  • Raghav Wahi
    • 1
  • Frank Hennrich
    • 1
  • Ralph Krupke
    • 1
  1. 1.Institut für Nanotechnologie, Forschungszentrum KarlsruheEggenstein-LeopoldshafenGermany
  2. 2.Physikalisches InstitutUniversität KarlsruheKarlsruheGermany

Personalised recommendations