Skip to main content
Log in

Contactless probing of the intrinsic carrier transport in single-walled carbon nanotubes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Intrinsic carrier transport properties of single-walled carbon nanotubes have been probed by two parallel methods on the same individual tubes: The contactless dielectric force microscopy (DFM) technique and the conventional field-effect transistor (FET) method. The dielectric responses of SWNTs are strongly correlated with electronic transport of the corresponding FETs. The DC bias voltage in DFM plays a role analogous to the gate voltage in FET. A microscopic model based on the general continuity equation and numerical simulation is built to reveal the link between intrinsic properties such as carrier concentration and mobility and the macroscopic observable, i.e. dielectric responses, in DFM experiments. Local transport barriers in nanotubes, which influence the device transport behaviors, are also detected with nanometer scale resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ilani, S.; McEuen, P. L. Electron transport in carbon nanotubes. Annu. Rev. Condens. Matter Phys. 2010, 1, 1–25.

    Article  Google Scholar 

  2. Avouris, P. Molecular electronics with carbon nanotubes. Acc. Chem. Res. 2002, 35, 1026–1034.

    Article  Google Scholar 

  3. Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem. Soc. Rev. 2013, 42, 2824–2860.

    Article  Google Scholar 

  4. Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M. Nanowire electronic and optoelectronic devices. Mater. Today 2006, 9, 18–27.

    Article  Google Scholar 

  5. Long, Y.-Z.; Yu, M.; Sun, B.; Gu, C.-Z.; Fan, Z. Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics. Chem. Soc. Rev. 2012, 41, 4560–4580.

    Article  Google Scholar 

  6. Medina-Sanchez, M.; Miserere, S.; Merkoci, A. Nanomaterials and lab-on-a-chip technologies. Lab Chip 2012, 12, 1932–1943.

    Article  Google Scholar 

  7. Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.

    Article  Google Scholar 

  8. Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, Ph. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 1998, 73, 2447.

    Article  Google Scholar 

  9. Jonscher, A. K. Dielectric relaxation in solids. J. Phys. D: Appl. Phys. 1999, 32, R57–R70.

    Article  Google Scholar 

  10. Jonscher, A. K. The ‘universal’ dielectric response. Nature 1977, 267, 673–679.

    Article  Google Scholar 

  11. Hilibrand, J.; Gold, R. D. Determination of the impurity distribution in junction diodes from capacitance-voltage measurements. RCA Review 1960, 21, 245–252.

    Google Scholar 

  12. Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices, 3rd ed; Wiley: New York, 2007.

    Google Scholar 

  13. Lu, W.; Zhang, J.; Li, Y. S.; Chen, Q.; Wang, X.; Hassanien, A.; Chen, L. W. Contactless characterization of electronic properties of nanomaterials using dielectric force microscopy. J. Phys. Chem. C 2012, 116, 7158–7163.

    Article  Google Scholar 

  14. Lu, W.; Wang, D.; Chen, L. W. Near-static dielectric polarization of individual carbon nanotubes. Nano Lett. 2007, 7, 2729–2733.

    Article  Google Scholar 

  15. Lu, W.; Xiong, Y.; Hassanien, A.; Zhao, W.; Zheng, M.; Chen, L. W. A scanning probe microscopy based assay for single-walled carbon nanotube metallicity. Nano Lett. 2009, 9, 1668–1672.

    Article  Google Scholar 

  16. Jin, Z.; Chu, H. B.; Wang, J. Y.; Hong, J. X.; Tan, W. C.; Li, Y. Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays. Nano Lett. 2007, 7, 2073–2079.

    Article  Google Scholar 

  17. Zhou, W. W.; Rutherglen, C.; Burke, P. J. Wafer scale synthesis of dense aligned arrays of single-walled carbon nanotubes. Nano Res. 2008, 1, 158–165.

    Article  Google Scholar 

  18. Goldberger, J.; Sirbuly, D. J.; Law, M.; Yang, P. D. ZnO nanowire transistors. J. Phys. Chem. B 2005, 109, 9–14.

    Article  Google Scholar 

  19. Lu, W.; Xiong, Y.; Chen, L. W. Length-dependent dielectric polarization in metallic single-walled carbon nanotubes. J. Phys. Chem. C 2009, 113, 10337–10340.

    Article  Google Scholar 

  20. Liang, J. L.; Akinwande, D.; Wong, H.-S. P. Carrier density and quantum capacitance for semiconducting carbon nanotubes. J. Appl. Phys. 2008, 104, 064515.

    Article  Google Scholar 

  21. Kim, W.; Javey, A.; Vermesh, O.; Wang, Q.; Li, Y. M.; Dai, H. J. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 2003, 3, 193–198.

    Article  Google Scholar 

  22. Lee, J. S.; Ryu, S.; Yoo, K.; Choi, I. S.; Yun, W. S.; Kim, J. Origin of gate hysteresis in carbon nanotube field-effect transistors. J. Phys. Chem. C 2007, 111, 12504–12507.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwei Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y.S., Ge, J., Cai, J. et al. Contactless probing of the intrinsic carrier transport in single-walled carbon nanotubes. Nano Res. 7, 1623–1630 (2014). https://doi.org/10.1007/s12274-014-0522-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0522-z

Keywords

Navigation