Skip to main content

Random networks and aligned arrays of single-walled carbon nanotubes for electronic device applications

Abstract

Singled-walled carbon nanotubes (SWNTs), in the form of ultrathin films of random networks, aligned arrays, or anything in between, provide an unusual type of electronic material that can be integrated into circuits in a conventional, scalable fashion. The electrical, mechanical, and optical properties of such films can, in certain cases, approach the remarkable characteristics of the individual SWNTs, thereby making them attractive for applications in electronics, sensors, and other systems. This review discusses the synthesis and assembly of SWNTs into thin film architectures of various types and provides examples of their use in digital electronic circuits with levels of integration approaching 100 transistors and in analog radio frequency (RF) systems with operating frequencies up to several gigahertz, including transistor radios in which SWNT transistors provide all of the active functionality. The results represent important steps in the development of an SWNT-based electronics technology that could find utility in areas such as flexible electronics, RF analog devices and others that might complement the capabilities of established systems.

References

  1. Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Ouyang, M.; Huang, J. L.; Lieber, C. M. Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc. Chem. Res. 2002, 35, 1018–1025.

    Article  CAS  PubMed  Google Scholar 

  3. Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Bozovic, D.; Bockrath, M.; Hafner, J. H.; Lieber, C. M.; Park, H.; Tinkham, M. Plastic deformations in mechanically strained single-walled carbon nanotubes. Phys. Rev. B 2003, 67, 033407.

    Article  ADS  Google Scholar 

  5. Zhou, X. J.; Park, J. Y.; Huang, S. M.; Liu, J.; McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 2005, 95, 146805.

    Article  PubMed  ADS  Google Scholar 

  6. Zhou, Y. X.; Gaur, A.; Hur, S. H.; Kocabas, C.; Meitl, M. A.; Shim, M.; Rogers, J. A. p-Channel, n-channel thin film transistors and p-n diodes based on single wall carbon nanotube networks. Nano Lett. 2004, 4, 2031–2035.

    Article  CAS  ADS  Google Scholar 

  7. Snow, E. S.; Novak, J. P.; Lay, M. D.; Houser, E. H.; Perkins, F. K.; Campbell, P. M. Carbon nanotube networks: Nanomaterial for macroelectronic applications. J. Vac. Sci. Technol. B 2004, 22, 1990–1994.

    Article  CAS  Google Scholar 

  8. Kocabas, C.; Pimparkar, N.; Yesilyurt, O.; Kang, S. J.; Alam, M. A.; Rogers, J. A. Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors. Nano Lett. 2007, 7, 1195–1202.

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Alam, M. A.; Pimparkar, N.; Kumar, S.; Murthy, J. Theory of nanocomposite network transistors for macroelectronics applications. MRS Bull. 2006, 31, 466–470.

    CAS  Google Scholar 

  10. Lee, M.; Im, J.; Lee, B. Y.; Myung, S.; Kang, J.; Huang, L.; Kwon, Y. K.; Hong, S. Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires. Nat. Nanotechnol. 2006, 1, 66–71.

    Article  CAS  PubMed  ADS  Google Scholar 

  11. LeMieux, M. C.; Roberts, M.; Barman, S.; Jin, Y. W.; Kim, J. M.; Bao, Z. N. Self-sorted, aligned nanotube networks for thin-film transistors. Science 2008, 321, 101–104.

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Huang, L. M.; Jia, Z.; O’Brien, S. Orientated assembly of single-walled carbon nanotubes and applications. J. Mater. Chem. 2007, 17, 3863–3874.

    Article  CAS  Google Scholar 

  13. Li, Y. L.; Zhang, L. H.; Zhong, X. H.; Windle, A. H. Synthesis of high purity single-walled carbon nanotubes from ethanol by catalytic gas flow CVD reactions. Nanotechnology 2007, 18, 225604.

    Article  ADS  Google Scholar 

  14. Zhang, G. Y.; Mann, D.; Zhang, L.; Javey, A.; Li, Y. M.; Yenilmez, E.; Wang, Q.; McVittie, J. P.; Nishi, Y.; Gibbons, J.; Dai, H. J. Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 16141–16145.

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Cao, Q.; Hur, S.-H.; Zhu, Z.-T.; Sun, Y.; Wang, C.; Meitl, M. A.; Shim, M.; Rogers, J. A. Highly bendable, transparent thin film transistors that use carbon nanotube based conductors and semiconductors with elastomeric dielectrics. Adv. Mater. 2006, 18, 304–309.

    Article  CAS  Google Scholar 

  16. Wu, Z.; Chen, Z.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F.; Rinzler, A. G. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–1276.

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Gruner, G. Carbon nanotube films for transparent and plastic electronics. J. Mater. Chem. 2006, 16, 3533–3539.

    Article  CAS  Google Scholar 

  18. Odintsov, A. A. Schottky barriers in carbon nanotube heterojunctions. Phys. Rev. Lett. 2000, 85, 150–153.

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Fuhrer, M. S.; Nygard, J.; Shih, L.; Forero, M.; Yoon, Y. G.; Mazzoni, M. S. C.; Choi, H. J.; Ihm, J.; Louie, S. G.; Zettl, A.; McEuen, P. L. Crossed nanotube junctions. Science 2000, 288, 494–497.

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Kocabas, C.; Hur, S. H.; Gaur, A.; Meitl, M. A.; Shim, M.; Rogers, J. A. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 2005, 1, 1110–1116.

    Article  CAS  PubMed  Google Scholar 

  21. Kocabas, C.; Shim, M.; Rogers, J. A. Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices. J. Am. Chem. Soc. 2006, 128, 4540–4541.

    Article  CAS  PubMed  Google Scholar 

  22. Kocabas, C.; Kang, S. J.; Ozel, T.; Shim, M.; Rogers, J. A. Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors. J. Phys. Chem. C 2007, 111, 17879–17886.

    Article  CAS  Google Scholar 

  23. Zhou, W.; Rutherglen, C.; Burke, P. Wafer scale synthesis of dense aligned arrays of single-walled carbon nanotubes. Nano Res. 2008, 1, 158–165.

    Article  CAS  Google Scholar 

  24. Dai, H. J. Carbon nanotubes: Synthesis, integration, and properties. Acc. Chem. Res. 2002, 35, 1035–1044.

    Article  CAS  PubMed  Google Scholar 

  25. Hur, S.-H.; Park, O. O.; Rogers, J. A. Extreme bendability in thin film transistors that use carbon nanotubes transferred from high temperature growth substrates. Appl. Phys. Lett. 2005, 86, 243502.

    Article  ADS  Google Scholar 

  26. Kang, S. J.; Kocabas, C.; Kim, H. S.; Cao, Q.; Meitl, M. A.; Khang, D. Y.; Rogers, J. A. Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic, applications. Nano Lett. 2007, 7, 3343–3348.

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Cao, Q.; Xia, M. G.; Shim, M.; Rogers, J. A. Bilayer organic-inorganic gate dielectrics for high-performance, low-voltage, single-walled carbon nanotube thin-film transistors, complementary logic gates, and p-n diodes on plastic substrates. Adv. Funct. Mater. 2006, 16, 2355–2362.

    Article  CAS  Google Scholar 

  28. Hur, S. H.; Yoon, M. H.; Gaur, A.; Shim, M.; Facchetti, A.; Marks, T. J.; Rogers, J. A. Organic nanodielectrics for low voltage carbon nanotube thin film transistors and complementary logic gates. J. Am. Chem. Soc. 2005, 127, 13808–13809.

    Article  CAS  PubMed  Google Scholar 

  29. Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q.; Wang, D. W.; Gordon, R. G.; Lundstrom, M.; Dai, H. J. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-K gate dielectrics. Nano Lett. 2004, 4, 447–450.

    Article  CAS  ADS  Google Scholar 

  30. Hur, S.-H.; Kocabas, C.; Gaur, A.; Shim, M.; Park, O. O.; Rogers, J. A. Printed thin film transistors and complementary logic gates that use polymer coated single-walled carbon nanotube networks. J. Appl. Phys. 2005, 98, 114302.

    Article  ADS  Google Scholar 

  31. Shim, M.; Javey, A.; Kam, N. W. S.; Dai, H. J. Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. J. Am. Chem. Soc. 2001, 123, 11512–11513.

    Article  CAS  PubMed  Google Scholar 

  32. Cao, Q.; Zhu, Z. T.; Lemaitre, M. G.; Xia, M. G.; Shim, M.; Rogers, J. A. Transparent flexible organic thin-film transistors that use printed single-walled carbon nanotube electrodes. Appl. Phys. Lett. 2006, 88, 113511.

    Article  ADS  Google Scholar 

  33. Fortunato, E.; Barquinha, P.; Pimentel, A.; Goncalves, A.; Marques, A.; Pereira, L.; Martins, R. Fully transparent ZnO thin-film transistor produced at room temperature. Adv. Mater. 2005, 17, 590–594.

    Article  CAS  Google Scholar 

  34. Collins, P. C.; Arnold, M. S.; Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001, 292, 706–709.

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Zhang, G. Y.; Qi, P. F.; Wang, X. R.; Lu, Y. R.; Li, X. L.; Tu, R.; Bangsaruntip, S.; Mann, D.; Zhang, L.; Dai, H. J. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 2006, 314, 974–977.

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Strano, M. S.; Dyke, C. A.; Usrey, M. L.; Barone, P. W.; Allen, M. J.; Shan, H.; Kittrell, C.; Hauge, R. H.; Tour, J. M.; Smalley, R. E. Electronic structure control of single-walled carbon nanotube functionalization. Science 2003, 301, 1519–1522.

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Wang, C. J.; Cao, Q.; Ozel, T.; Gaur, A.; Rogers, J. A.; Shim, M. Electronically selective chemical functionalization of carbon nanotubes: Correlation between Raman spectral and electrical responses. J. Am. Chem. Soc. 2005, 127, 11460–11468.

    Article  CAS  PubMed  Google Scholar 

  39. Hersam, M. C. Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 2008, 3, 387–394.

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Cao, Q.; Kim, H. S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C. J.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500.

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Pimparkar, N.; Cao, Q.; Rogers, J. A.; Alam, M. A. Theory and practice of “striping” for improved on/off ratio in carbon nanonet thin film transistors, 2008, unpublished work.

  42. Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Pimparkar, N.; Kocabas, C.; Kang, S. J.; Rogers, J.; Alam, M. A. Limits of performance gain of aligned CNT over randomized network: Theoretical predictions and experimental validation. IEEE Electron Device Lett. 2007, 28, 593–595.

    Article  CAS  ADS  Google Scholar 

  44. Cao, Q.; Xia, M. G.; Kocabas, C.; Shim, M.; Rogers, J. A.; Rotkin, S. V. Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors. Appl. Phys. Lett. 2007, 90, 023516.

    Article  ADS  Google Scholar 

  45. Chen, J.; Klinke, C.; Afzali, A.; Avouris, P. Self-aligned carbon nanotube transistors with charge transfer doping. Appl. Phys. Lett. 2005, 86, 123108.

    Article  ADS  Google Scholar 

  46. Zhang, Y.; Ichihashi, T.; Landree, E.; Nihey, F.; Iijima, S. Heterostructures of single-walled carbon nanotubes and carbide nanorods. Science 1999, 285, 1719–1722.

    Article  CAS  PubMed  Google Scholar 

  47. Seidel, R. V.; Graham, A. P.; Rajasekharan, B.; Unger, E.; Liebau, M.; Duesberg, G. S.; Kreupl, F.; Hoenlein, W. Bias dependence and electrical breakdown of small diameter single-walled carbon nanotubes. J. Appl. Phys. 2004, 96, 6694–6699.

    Article  CAS  ADS  Google Scholar 

  48. Baumgardner, J. E.; Pesetski, A. A.; Murduck, J. M.; Przybysz, J. X.; Adam, J. D.; Zhang, H. Inherent linearity in carbon nanotube field-effect transistors. Appl. Phys. Lett. 2007, 91, 052107.

    Article  ADS  Google Scholar 

  49. Appenzeller, J. Carbon nanotubes for high-performance electronics — Progress and prospect. Proc. IEEE 2008, 96, 201–211.

    Article  CAS  Google Scholar 

  50. Zhong, Z. H.; Gabor, N. M.; Sharping, J. E.; Gaeta, A. L.; McEuen, P. L. Terahertz time-domain measurement of ballistic electron resonance in a single-walled carbon nanotube. Nat. Nanotechnol. 2008, 3, 201–205.

    Article  CAS  PubMed  Google Scholar 

  51. Le Louarn, A.; Kapche, F.; Bethoux, J. M.; Happy, H.; Dambrine, G.; Derycke, V.; Chenevier, P.; Izard, N.; Goffman, M. F.; Bourgoin, J. P.; Derycke, V.; Chenevier, P.; Izard, N.; Goffman, M. F.; Bourgoin, J. P. Intrinsic current gain cutoff frequency of 30 GHz with carbon nanotube transistors. Appl. Phys. Lett. 2007, 90, 233108.

    Article  ADS  Google Scholar 

  52. Kocabas, C.; Kim, H. S.; Banks, T.; Rogers, J. A.; Pesetski, A. A.; Baumgardner, J. E.; Krishnaswamy, S. V.; Zhang, H. Radio frequency analog electronics based on carbon nanotube transistors. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 1405–1409.

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Kocabas, C.; Dunham, S.; Cao, Q.; Cimino, K.; Ho, X. N.; Kim, H. S.; Baumgardner, J. E.; Pesetski, A. A.; Zhang, H.; Banks, T.; Feng, M.; Rogers, J. A. High frequency performance of sub-micron quasi-ballistic carbon nanotube array transistors, 2008, unpublished work.

  54. Nouchi, R.; Tomita, H.; Ogura, A.; Kataura, H.; Shiraishi, M. Logic circuits using solution-processed single-walled carbon nanotube transistors. Appl. Phys. Lett. 2008, 92, 253507.

    Article  ADS  Google Scholar 

  55. Patil, N.; Lin, A.; Myers, E. R.; Wong, H. S. P.; Mitra, S. Integrated wafer-scale growth and transfer of directional carbon nanotubes and misaligned-carbon-nanotubeimmune logic structures. Proc. VLSI Technology Symp. 2008, 205–206.

  56. Crone, B.; Dodabalapur, A.; Lin, Y. Y.; Filas, R. W.; Bao, Z.; LaDuca, A.; Sarpeshkar, R.; Katz, H. E.; Li, W. Large-scale complementary integrated circuits based on organic transistors. Nature 2000, 403, 521–523.

    Article  CAS  PubMed  ADS  Google Scholar 

  57. Menard, E.; Meitl, M. A.; Sun, Y. G.; Park, J. U.; Shir, D. J. L.; Nam, Y. S.; Jeon, S.; Rogers, J. A. Micro-and nanopatterning techniques for organic electronic and optoelectronic systems. Chem. Rev. 2007, 107, 1117–1160.

    Article  CAS  PubMed  Google Scholar 

  58. Chason, M.; Brazis, P. W.; Zhang, H.; Kalyanasundaram, K.; Gamota, D. R. Printed organic semiconducting devices. Proc. IEEE 2005, 93, 1348–1356.

    Article  CAS  Google Scholar 

  59. Pesetski, A. A.; Baumgardner, J. E.; Krishnaswamy, S. V.; Zhang, H.; Kocabas, C.; Banks, T.; Rogers, J. A.; Adam, J. D. A 500 MHz carbon nanotube field-effect transistor oscillator. Appl. Phys. Lett. 2008, 93, 123506.

    Article  ADS  Google Scholar 

  60. Reuss, R. H.; Chalamala, B. R.; Moussessian, A.; Kane, M. G.; Kumar, A.; Zhang, D. C.; Rogers, J. A.; Hatalis, M.; Temple, D.; Moddel, G.; Eliasson, B. J.; Estes, M. J.; Kunze, J.; Handy, E. S.; Harmon, E. S.; Salzman, D. B.; Woodall, J. M.; Alam, M. A.; Murthy, J. Y.; Jacobsen, S. C.; Olivier, M.; Markus, D.; Campbell, P. M.; Snow, E. Macroelectronics: Perspectives on technology and applications. Proc. IEEE 2005, 93, 1239–1256.

    Article  CAS  Google Scholar 

  61. Ahn, J. H.; Kim, H. S.; Lee, K. J.; Jeon, S.; Kang, S. J.; Sun, Y. G.; Nuzzo, R. G.; Rogers, J. A. Heterogeneous threedimensional electronics by use of printed semiconductor nanomaterials. Science 2006, 314, 1754–1757.

    Article  CAS  PubMed  ADS  Google Scholar 

  62. Sun, Y. G.; Rogers, J. A. Inorganic semiconductors for flexible electronics. Adv. Mater. 2007, 19, 1897–1916.

    Article  CAS  Google Scholar 

  63. Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.

    Article  CAS  PubMed  Google Scholar 

  64. Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Rogers.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Cao, Q., Rogers, J.A. Random networks and aligned arrays of single-walled carbon nanotubes for electronic device applications. Nano Res. 1, 259–272 (2008). https://doi.org/10.1007/s12274-008-8033-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-008-8033-4

Keywords

  • Carbon nanotubes
  • electronic devices
  • thin-film transistors