Skip to main content

Carbon Nanotubes for Nanoelectronics and Microelectronic Devices

  • Living reference work entry
  • First Online:
Handbook of Carbon Nanotubes

Abstract

Nanomaterials have a variety of chemical, physical, mechanical, and electrical properties that are interesting and useful. Carbon nanotubes, out of all the nanomaterials utilized in nanoelectronics, are particularly essential due to their exceptional electrical properties. CNTs could be employed as a basic component in the development of new electronic devices. Depending on certain and discrete (“chiral”) angles and tube radii, they can act as metals or semiconductors. Carbon nanotubes make it possible to create gadgets on nanometric scales. They can be employed in projects that include diodes, transistors, connecting elements, field emission sources, and other electrical and optoelectronic components. This chapter summarizes the current state of the art in this field, stressing the multiple carbon nanotube features and applications that take advantage of CNTs’ unique aspect ratio, mechanical strength, as well as electrical and thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anzar N, Hasan R, Tyagi M, Yadav N, Narang J et al (2020) Carbon nanotube – a review on synthesis, properties and plethora of applications in the field of biomedical science. Sens Int. https://doi.org/10.1016/j.sintl.2020.100003

  • Bharti A, Cheruvally G, Muliankeezhu S et al (2017) Microwave assisted, facile synthesis of Pt/CNT catalyst for proton exchange membrane fuel cell application. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2017.02.109

  • Bhatt VD, Joshi S, Lugli P et al (2017) Metal-free fully solution-processable flexible electrolyte-gated carbon nanotube field effect transistor. IEEE Trans Electron Devices. https://doi.org/10.1109/TED.2017.2657882

  • Bishop MD, Hills G, Srimani T, Lau C, Murphy D, Fuller S, Humes J, Ratkovich A, Nelson M, Shulaker MM et al (2020) Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities. Nat Electron. https://doi.org/10.1038/s41928-020-0419-7

  • Brodie I, Spindt CA (1979) The application of thin-film field-emission cathodes to electronic tubes. Appl Surf Sci. https://doi.org/10.1016/0378-5963(79)90031-X

  • Cassell AM, Ye Q, Cruden BA, Li J, Sarrazin PC, Ng HT, Han J, Meyyappan M et al (2004) Combinatorial chips for optimizing the growth and integration of carbon nanofibre based devices. Nanotechnology. https://doi.org/10.1088/0957-4484/15/1/002

  • Chai Y, Xiao Z, Chan PCH et al (2010) Horizontally aligned carbon nanotube bundles for interconnect application: diameter-dependent contact resistance and mean free path. Nanotechnology. https://doi.org/10.1088/0957-4484/21/23/235705

  • Chang YW, Oh JS, Yoo SH, Choi HH, Yoo KH et al (2007) Electrically refreshable carbon-nanotube-based gas sensors. Nanotechnology. https://doi.org/10.1088/0957-4484/18/43/435504

  • Chou SL, Wang JZ, Chew SY, Liu HK, Dou SX et al (2008) Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors. Electrochem Commun. https://doi.org/10.1016/j.elecom.2008.08.051

  • Cosnier S, Holzinger M, Goff AL et al (2014) Recent advances in carbon nanotube-based enzymatic fuel cells. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2014.00045

  • Dekker C (2018) How we made the carbon nanotube transistor. Nat Electron. https://doi.org/10.1038/s41928-018-0134-9

  • Dube I, Jiménez D, Fedorov G, Boyd A, Gayduchenko I, Paranjape M, Barbara P et al (2015) Understanding the electrical response and sensing mechanism of carbon-nanotube-based gas sensors. Carbon. https://doi.org/10.1016/j.carbon.2015.01.060

  • Eichhorn V, Fatikow S, Wortmann T, Stolle C, EdelerC., Jasper D, Sardan O, Bøggild P, Boetsch G, Canales C, Clavel R et al (2009) NanoLab: a nanorobotic system for automated pick-and-place handling and characterization of CNTs. In: Proceedings – IEEE international conference on robotics and automation. https://doi.org/10.1109/ROBOT.2009.5152440

  • Firouzi A, Sobri S, Yasin FM, Ahmadun F et al (2011) Fabrication of gas sensors based on carbon nanotube for CH4 and CO2 detection. Ipcbee

    Google Scholar 

  • Forootan Fard H, Khodaverdi M, Pourfayaz F, Ahmadi MH et al (2020) Application of N-doped carbon nanotube-supported Pt-Ru as electrocatalyst layer in passive direct methanol fuel cell. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2020.06.254

  • Halakoo E, Khademi A, Ghasemi M, Yusof NM, Gohari RJ, Ismail AF et al (2015) Production of sustainable energy by carbon nanotube/platinum catalyst in microbial fuel cell. Procedia CIRP. https://doi.org/10.1016/j.procir.2014.07.034

  • Happy H, Nougaret L, Meng N, Pichonat E, Derycke V, Vignaud D, Dambrine G et al (2011) Carbon electronics for high-frequency applications. In: Carbon nanotubes and their applications. https://doi.org/10.4032/9789814303187

    Chapter  Google Scholar 

  • Happy H, Nougaret L, Meng N, Pichonat E, Derycke V, Vignaud D, Dambrinea G et al (2012) Carbon electronics for high-frequency applications. In: Carbon nanotubes and their applications. https://doi.org/10.1201/b11989

    Chapter  Google Scholar 

  • Hekmat F, Shahrokhian S, Rahimi S et al (2019) 3D flower-like binary nickel cobalt oxide decorated coiled carbon nanotubes directly grown on nickel nanocones and binder-free hydrothermal carbons for advanced asymmetric supercapacitors. Nanoscale. https://doi.org/10.1039/c8nr08077a

  • Hu L, Wu H, La Mantia F, Yang Y, Cui Y et al (2010) Thin, flexible secondary Li-ion paper batteries. ACS Nano. https://doi.org/10.1021/nn1018158

  • Ikonen T, Kalidas N, Lahtinen K, Isoniemi T, Toppari JJ, Vázquez E, Herrero-Chamorro MA, Fierro JLG, Kallio T, Lehto VP et al (2020) Conjugation with carbon nanotubes improves the performance of mesoporous silicon as Li-ion battery anode. Sci Rep. https://doi.org/10.1038/s41598-020-62564-0

  • Jang YT, Moon SI, Ahn JH, Lee YH, Ju BK et al (2004) A simple approach in fabricating chemical sensor using laterally grown multi-walled carbon nanotubes. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2003.11.004

  • Javey A, Tu R, Farmer DB, Guo J, Gordon RG, Dai H et al (2005) High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett. https://doi.org/10.1021/nl047931j

  • Jayababu N, Jo S, Kim Y, Kim D et al (2021) Preparation of NiO decorated CNT/ZnO core-shell hybrid nanocomposites with the aid of ultrasonication for enhancing the performance of hybrid supercapacitors. Ultrason Sonochem. https://doi.org/10.1016/j.ultsonch.2020.105374

  • Jiang D, Sun S, Edwards M, Jeppson K, Wang N, Fu Y, Liu J et al (2017) A flexible and stackable 3D interconnect system using growth-engineered carbon nanotube scaffolds. Flex Print Electron. https://doi.org/10.1088/2058-8585/aa6a82

  • Karunasiri RPU, Bruinsma R, Rudnick J et al (1989) Thin-film growth and the shadow instability. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.62.788

  • Kaskhedikar NA, Maier J (2009) Lithium storage in carbon nanostructures. Adv Mater. https://doi.org/10.1002/adma.200901079

  • Khan IA, Nasim F, Choucair M, Ullah S, Badshah A, Nadeem MA et al (2016) Cobalt oxide nanoparticle embedded N-CNTs: lithium ion battery applications. RSC Adv. https://doi.org/10.1039/c5ra23222h

  • Kinloch IA, Suhr J, Lou J, Young RJ, Ajayan PM (2018) Composites with carbon nanotubes and graphene: an outlook. Science. https://doi.org/10.1126/science.aat7439

  • Kordrostami Z, Hossein M (2010) Fundamental physical aspects of carbon nanotube transistors. In: Carbon nanotubes. https://doi.org/10.5772/39424

  • Kumari B, Kumar R, Sharma R, Sahoo M et al (2021) Design, modeling and analysis of cu-carbon hybrid interconnects. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3104299

  • Landi BJ, Ganter MJ, Cress CD, DiLeo RA, Raffaelle RP et al (2009) Carbon nanotubes for lithium ion batteries. Energy Environ Sci. https://doi.org/10.1039/b904116h

  • Lebedev N, Trammell SA, Tsoi S, Spano A, Kim JH, Xu J, Twigg ME, Schnur JM et al (2009) Bio-inspired photo-electronic material based on photosynthetic proteins. In: Nanobiosystems: processing, characterization, and applications II. https://doi.org/10.1117/12.829353

  • Lee S, Lee BJ, Shin PK et al (2009) Carbon nanotube interconnection and its electrical properties for semiconductor applications. Jpn J Appl Phys. https://doi.org/10.1143/JJAP.48.125006

  • Lee H, Shaker G, Naishadham K, Song X, McKinley M, Wagner B, Tentzeris M et al (2011) Carbon-nanotube loaded antenna-based ammonia gas sensor. IEEE Trans Microwave Theory Tech. https://doi.org/10.1109/TMTT.2011.2164093

  • Lefèvre M, Proietti E, Jaouen F, Dodelet JP et al (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science. https://doi.org/10.1126/science.1170051

  • Li, X., Sun, W., Wang, L., Qi, Y., Guo, T., Zhao, X., Yan, X. et al (2015) Three-dimensional hierarchical self-supported NiCo2O4/carbon nanotube core-shell networks as high performance supercapacitor electrodes. RSC Adv. https://doi.org/10.1039/c4ra09048a

  • Li C, Zhou X, Zhai F, Li Z, Yao F, Qiao R, Chen K, Yu D, Sun Z, Liu K, Dai Q et al (2017) Quiver-quenched optical-field-emission from carbon nanotubes. Appl Phys Lett. https://doi.org/10.1063/1.5003004

  • Liebau M, Unger E, Kreupl F, Graham AP, Duesberg GS, Steinhogl W et al (2002) Carbon nanotubes in interconnect applications. Microelectron Eng 64:399–408

    Google Scholar 

  • Lin, Z. D., Young, S. J., Chang, S. J. et al (2015) CO2 gas sensors based on carbon nanotube thin films using a simple transfer method on flexible substrate. IEEE Sensors J. https://doi.org/10.1109/JSEN.2015.2472968

  • Maciel IO, Neves BRA, Santos AP, Furtado CA, Ferlauto AS, Plentz F et al (2005) Fabrication of selective metal contacts on single-walled carbon nanotubes for device applications. Microsc Microanal. https://doi.org/10.1017/S1431927605051007

  • Matsumoto T, Komatsu T, Arai K, Yamazaki T, Kijima M, Shimizu H, Takasawa Y, Nakamura J et al (2004) Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes. Chem Commun. https://doi.org/10.1039/b400607k

  • Milne WI, Teo KBK, Amaratunga GAJ, Legagneux P, Gangloff L, Schnell JP, Semet V, Thien Binh V, Groening O et al (2004) Carbon nanotubes as field emission sources. J Mater Chem. https://doi.org/10.1039/b314155c

  • Minamisawa RA, Chhay B, Ila D et al (2007) Electrical transport behavior in phenolic resin-based composites doped with. Mater Res Soc Symp Proc

    Google Scholar 

  • Mink JE, Rojas JP, Logan BE, Hussain MM (2012) Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 μl) microbial fuel cell. Nano Lett. https://doi.org/10.1021/nl203801h

  • Mohana Reddy AL, Rajalakshmi N, Ramaprabhu S (2008) Cobalt-polypyrrole-multiwalled carbon nanotube catalysts for hydrogen and alcohol fuel cells. Carbon. https://doi.org/10.1016/j.carbon.2007.10.021

  • Mukherjee S (2020) CNT-Ni-Co-O based composite for Supercapacitor applications by cyclic Voltametry analysis: a short quick glimpse. Mater Sci Res India. https://doi.org/10.13005/msri/170104

  • Ong KG, Zeng K, Grimes CA et al (2002) A wireless, passive carbon nanotube-based gas sensor. IEEE Sensors J. https://doi.org/10.1109/JSEN.2002.1000247

  • Patra S, Munichandraiah N (2007) Supercapacitor studies of electrochemically deposited PEDOT on stainless steel substrate. J Appl Polym Sci. https://doi.org/10.1002/app.26675

  • Pico F, Ibañez J, Lillo-Rodenas MA, Linares-Solano A, Rojas RM, Amarilla JM, Rojo JM et al (2008) Understanding RuO2·xH2O/carbon nanofibre composites as supercapacitor electrodes. J Power Sources. https://doi.org/10.1016/j.jpowsour.2007.11.001

  • Sazali N, Salleh WNW, Jamaludin AS, Razali MNM et al (2020) New perspectives on fuel cell technology: a brief review. Membranes. https://doi.org/10.3390/membranes10050099

  • Schopf D, Es-Souni M (2016) Supported porous carbon and carbon–CNT nanocomposites for supercapacitor applications. Appl Phy Mater Sc Process. https://doi.org/10.1007/s00339-016-9730-6

  • Shen Y, Xia Z, Wang Y, Poh CK, Lin J et al (2014) Pt coated vertically aligned carbon nanotubes as electrodes for proton exchange membrane fuel cells. Procedia Eng. https://doi.org/10.1016/j.proeng.2013.11.037

  • Sheng X, Wouters B, Breugelmans T, Hubin A, Vankelecom IFJ, Pescarmona PP et al (2014) Cu/CuxO and Pt nanoparticles supported on multi-walled carbon nanotubes as electrocatalysts for the reduction of nitrobenzene. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2013.09.006

  • Shin KY, Lee CT, Kao JS, Kei CC, Chang CM, Hsiao CN, Liang JH, Leou KC, Tsai CH et al (2007) Large-scale growth of single-walled carbon nanotubes using cold-wall chemical vapor deposition. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom. https://doi.org/10.1116/1.2796186

  • Sun Y, Shin DH, Yun KN, Hwang YM, Song Y, Leti G, Jeon SG, Kim JI, Saito Y, Lee CJ et al (2014) Field emission behavior of carbon nanotube field emitters after high temperature thermal annealing. AIP Adv. https://doi.org/10.1063/1.4889896

  • Sun L, Si H, Zhang Y, Shi Y, Wang K, Liu J, Zhang Y et al (2019) Sn-SnO2 hybrid nanoclusters embedded in carbon nanotubes with enhanced electrochemical performance for advanced lithium ion batteries. J Power Sources. https://doi.org/10.1016/j.jpowsour.2019.01.063

  • Tang JM, Jensen K, Li W, Waje M, Larsen P, Ramesh P, Itkis ME, Yan Y, Haddon RC (2007a) Carbon nanotube free-standing membrane of Pt/SWNTs as catalyst layer in hydrogen fuel cells. Aust J Chem. https://doi.org/10.1071/CH06411

  • Tang JM, Jensen K, Waje M, Li W, Larsen P, Pauley K, Chen Z, Ramesh P, Itkis ME, Yan Y, Haddon RC et al (2007b) High performance hydrogen fuel cells with ultralow Pt loading carbon nanotube thin film catalysts. J Phys Chem C. https://doi.org/10.1021/jp071469k

  • Tawfik WZ, Kumar CMM, Park J, Shim SK, Lee H, Lee J, Han JH, Ryu SW, Lee N, Lee JK et al (2019) Cathodoluminescence of a 2 inch ultraviolet-light-source tube based on the integration of AlGaN materials and carbon nanotube field emitters. J Phys Chem C. https://doi.org/10.1039/c9tc03365c

  • Tiwari, P., Janas, D., Chandra, R. et al (2021) Self-standing MoS2/CNT and MnO2/CNT one dimensional core shell heterostructures for asymmetric supercapacitor application. Carbon. https://doi.org/10.1016/j.carbon.2021.02.080

  • Wagner FT, Lakshmanan B, Mathias MF (2010) Electrochemistry and the future of the automobile. J Phys Chem Lett. https://doi.org/10.1021/jz100553m

  • Wang C, Waje M, Wang X, Tang JM, Haddon RC, Yan Y (2004) Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Lett. https://doi.org/10.1021/nl034952p

  • Wang S, Yu D, Dai L (2011) Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. J Am Chem Soc. https://doi.org/10.1021/ja1112904

  • Wang Y, Huang S, Lu Y, Cui S, Chen W, Mi L et al (2017) High-rate-capability asymmetric supercapacitor device based on lily-like Co3O4 nanostructures assembled using nanowires. RSC Adv. https://doi.org/10.1039/c6ra27356d

  • Wang J, Li B, Yang D, Lv H, Zhang C (2018) Preparation of an octahedral PtNi/CNT catalyst and its application in high durability PEMFC cathodes. RSC Adv. https://doi.org/10.1039/c8ra02158a

  • Weng W, Lin H, Chen X, Ren J, Zhang Z, Qiu L, Guan G, Peng H et al (2014) Flexible and stable lithium ion batteries based on three-dimensional aligned carbon nanotube/silicon hybrid electrodes. J Mater Chem A. https://doi.org/10.1039/c4ta00711e

  • Xi N, Lai KWC, Zhang J, Luo Y, Chen H, Fung CKM et al (2008) Carbon nanotube-based color IR detectors. In: Infrared technology and applications XXXIV. https://doi.org/10.1117/12.782250

    Chapter  Google Scholar 

  • Xie S, Dong F, Li J et al (2019) Flexible solid-state supercapacitor based on carbon nanotube/Fe3O4/reduced graphene oxide binary films. ChemistrySelect. https://doi.org/10.1002/slct.201803223

  • Xue L, Wang W, Guo Y, Liu G, Wan P et al (2017) Flexible polyaniline/carbon nanotube nanocomposite film-based electronic gas sensors. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2016.12.064

  • Yeow JTW, Wang Y (2009) A review of carbon nanotubes-based gas sensors. J Sens. https://doi.org/10.1155/2009/493904

  • Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS et al (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science. https://doi.org/10.1126/science.287.5453.637

  • Zhang T, Mubeen S, Myung NV, Deshusses MA et al (2008) Recent progress in carbon nanotube-based gas sensors. Nanotechnology. https://doi.org/10.1088/0957-4484/19/33/332001

  • Zhao J, Buldum A, Han J, Lu JP et al (2002) Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology. https://doi.org/10.1088/0957-4484/13/2/312

  • Zhao M, Xia Y, Mei L (2005) Diffusion and condensation of lithium atoms in single-walled carbon nanotubes. Phys Rev B Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.71.165413

  • Zhao WS, Fu K, Wang DW, Li M, Wang G, Yin WY (2019) Mini-review: modeling and performance analysis of nanocarbon interconnects. Appl Sci (Switz). https://doi.org/10.3390/app9112174

  • Zheng Y, Lin Z, Chen W, Liang B, Du H, Yang R, He X, Tang Z, Gui X (2017) Flexible, sandwich-like CNTs/NiCo2O4 hybrid paper electrodes for all-solid state supercapacitors. J Mater Chem A. https://doi.org/10.1039/c7ta00491e

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nair, A.K., Thomas, P., M. S, K., Kalarikkal, N. (2022). Carbon Nanotubes for Nanoelectronics and Microelectronic Devices. In: Abraham, J., Thomas, S., Kalarikkal, N. (eds) Handbook of Carbon Nanotubes. Springer, Cham. https://doi.org/10.1007/978-3-319-70614-6_33-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70614-6_33-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70614-6

  • Online ISBN: 978-3-319-70614-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics