Skip to main content

Synthesis of monodisperse CdS nanorods catalyzed by Au nanoparticles

Abstract

Semiconductor nanocrystals (dots, rods, wires, etc.) exhibit a wide range of electrical and optical properties that differ from those of the corresponding bulk materials. These properties depend on both nanocrystal size and shape. Compared with nanodots, nanorods have an additional degree of freedom, the length or aspect ratio, and reduced symmetry, which leads to anisotropic properties. In this paper, we report the Au nanoparticlecatalyzed colloidal synthesis of monodisperse CdS nanorods. Based on systematic high resolution transmission electron microscopy studies, we propose a growth mechanism for these nanorods.

References

  1. Alivisatos, A. P. Semiconductor clusters, nano crystals,and quantum dots. Science 1996, 271, 933–937.

    Article  CAS  ADS  Google Scholar 

  2. Hu, J. T.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32, 435–445.

    Article  CAS  Google Scholar 

  3. Cozzoli, P. D.; Pellegrino, T.; Manna, L. Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem. Soc. Rev. 2006, 35, 1195–1208.

    Article  CAS  PubMed  Google Scholar 

  4. Murphy, C. J.; Jana, N. R. Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater. 2002, 14, 80–82.

    Article  CAS  Google Scholar 

  5. Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2003, 2, 382–385.

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Manna, L.; Scher, E. C.; Alivisatos, A. P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 2000, 122, 12700–12706.

    Article  CAS  Google Scholar 

  8. Trentler, T. J.; Goel, S. C.; Hickman, K. M.; Viano, A. M.; Chiang, M. Y.; Beatty, A. M.; Gibbons, P. C.; Buhro, W. E. Solution-liquid-solid growth of indium phosphide fibers from organometallic precursors: Elucidation of molecular and nonmolecular components of the pathway. J. Am. Chem. Soc. 1997, 119, 2172–2181.

    Article  CAS  Google Scholar 

  9. Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E. Solution-liquid-solid growth of crystalline III-V semiconductors an analogy to vaporliquid-solid growth. Science 1995, 270, 1791–1794.

    Article  CAS  ADS  Google Scholar 

  10. Kan, S. H.; Aharoni, A.; Mokari, T.; Banin, U. Shape control of III–V semiconductor nanocrystals: Synthesis and properties of InAs quantum rods. Faraday Discuss. 2004, 125, 23–38.

    Article  CAS  PubMed  Google Scholar 

  11. Hull, K. L.; Grebinski, J. W.; Kosel, T. H.; Kuno, M. Induced branching in confined PbSe nanowires. Chem. Mater. 2005, 17, 4416–4425.

    Article  CAS  Google Scholar 

  12. Shi, W. L.; Sahoo, Y.; Zeng, H.; Ding, Y.; Swihart, M. T.; Prasad, P. N. Anisotropic growth of PbSe nanocrystals on Au Fe3O4 hybrid nanoparticles. Adv. Mater. 2006, 18, 1889–1894.

    Article  CAS  Google Scholar 

  13. Grebinski, J. W.; Richter, K. L.; Zhang, J.; Kosel, T. H.; Kuno, M. Synthesis and characterization of Au/Bi core/shell nanocrystals: A precursor toward II VI nanowires. J. Phys. Chem. B 2004, 108, 9745–9751.

    Article  CAS  Google Scholar 

  14. Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A. Control of thickness and orientation of solution-grown silicon nanowires. Science 2000, 287, 1471–1473.

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Zhang, J. Z. Interfacial charge carrier dynamics of colloidal semiconductor nanoparticles. J. Phys. Chem. B 2000, 104, 7239–7253.

    Article  CAS  Google Scholar 

  16. Shen, G. Z.; Cho, J. H.; Yoo, J. K.; Yi, G. C.; Lee, C. J. Synthesis of single-crystal CdS microbelts using a modified thermal evaporation method and their photoluminescence. J. Phys. Chem. B 2005, 109, 9294–9298.

    Article  CAS  PubMed  Google Scholar 

  17. Jang, J. S.; Joshi, U. A.; Lee, J. S. Solvothermal synthesisoc of CdS nanowires for photocatalytic hydrogen and electricity production. J. Phys. Chem. C 2007, 111, 13280–13287.

    Article  CAS  Google Scholar 

  18. Duan, X. F.; Niu, C. M.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. High-performance thinfilm transistors using semiconductor nanowires and nanoribbons. Nature 2003, 425, 274–278.

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Weinhardt, L.; Gleim, T.; Fuchs, O.; Heske, C.; Umbach, E.; Bar, M.; Muffler, H. J.; Fischer, C. H.; Lux-Steiner, M. C.; Zubavichus, Y.; Niesen, T. P.; Karg, F. CdS and Cd(OH)2 formation during Cd treatments of Cu(In,Ga)(S,Se)2 thin-film solar cell absorbers. Appl. Phys. Lett. 2003, 82, 571.

    Article  CAS  ADS  Google Scholar 

  20. Mandal, S.; Rautaray, D.; Sanyal, A.; Sastry, M. Synthesis and assembly of CdS nanoparticles in Keggin ion colloidal particles as templates. J. Phys. Chem. B 2004, 108, 7126–7131.

    Article  CAS  Google Scholar 

  21. Duan, X. F.; Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 2000, 12, 298–302.

    Article  CAS  Google Scholar 

  22. Ye, C. H.; Meng, G. W.; Wang, Y. H.; Jiang, Z.; Zhang, L. D. On the growth of CdS nanowires by the evaporation of CdS nanopowders. J. Phys. Chem. B 2002, 106, 10338–10341.

    Article  CAS  Google Scholar 

  23. Zhang, M. F.; Drechsler, M.; Muller, A. H. E. Template-controlled synthesis of wire-like cadmium sulfide nanoparticle assemblies within core-shell cylindrical polymer brushes. Chem. Mater. 2004, 16, 537–543.

    MATH  Article  CAS  Google Scholar 

  24. Xu, D.; Liu, Z. P.; Liang, J. B.; Qian, Y. T. Solvothermal synthesis of CdS nanowires in a mixed solvent of ethylenediamine and dodecanethiol. J. Phys. Chem. B 2005, 109, 14344–14349.

    Article  CAS  PubMed  Google Scholar 

  25. Carbone, L.; Nobile, C.; De Giorg, M.; Sala, F. D.; Morello, G.; Pompa, P.; Hytch, M.; Snoeck, E.; Fiore, A.; Franchini, I. R.; Nadasan, M.; Silvestre, A. F.; Chiodo, L.; Kudera, S. Cingolani, R.; Krahne, R.; Manna, L. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 2007, 7, 2942–2950.

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Lin, H. Y.; Chen, Y. F.; Wu, J. G.; Wang, D. I.; Chen, C. C. Carrier transfer induced photoluminescence change in metal-semiconductor core-shell nanostructures. Appl. Phys. Lett. 2006, 88, 161911.

    Article  ADS  Google Scholar 

  27. Saunders, A. E.; Popov, I.; Banin, U. Synthesis of hybrid CdS Au colloidal nanostructures. J. Phys. Chem. B 2006, 110, 25421–25429.

    Article  CAS  PubMed  Google Scholar 

  28. Yong, K. T.; Sahoo, Y.; Swihart, M. T.; Prasad, P. N. Shape control of CdS nanocrystals in one-pot synthesis. J. Phys. Chem. C 2007, 111, 2447–2458.

    Article  CAS  Google Scholar 

  29. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid liquid system. J. Chem. Soc. Chem. Commun. 1994, 801–802.

  30. Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H. Dumbbell-like bifunctional Au Fe3O4 nanoparticles. Nano Lett. 2005, 5, 379–382.

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Buffat, P.; Borel, J. P. Size effect on melting temperature of gold particles. Phys. Rev. A 1976, 13, 2287–2298.

    Article  CAS  ADS  Google Scholar 

  32. Sakai, H. Surface-induced melting of small particles. Surf. Sci. 1996, 351, 285–291.

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark Swihart or Hao Zeng.

Additional information

This article is published with open access at Springerlink.com

Electronic supplementary material

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Zhang, H., Delikanli, S., Qin, Y. et al. Synthesis of monodisperse CdS nanorods catalyzed by Au nanoparticles. Nano Res. 1, 314–320 (2008). https://doi.org/10.1007/s12274-008-8032-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-008-8032-5

Keywords

  • Nanorods
  • monodisperse
  • catalytic growth
  • solution phase synthesis