Nano Research

, Volume 1, Issue 4, pp 314–320 | Cite as

Synthesis of monodisperse CdS nanorods catalyzed by Au nanoparticles

Open Access
Research Article

Abstract

Semiconductor nanocrystals (dots, rods, wires, etc.) exhibit a wide range of electrical and optical properties that differ from those of the corresponding bulk materials. These properties depend on both nanocrystal size and shape. Compared with nanodots, nanorods have an additional degree of freedom, the length or aspect ratio, and reduced symmetry, which leads to anisotropic properties. In this paper, we report the Au nanoparticlecatalyzed colloidal synthesis of monodisperse CdS nanorods. Based on systematic high resolution transmission electron microscopy studies, we propose a growth mechanism for these nanorods.

Keywords

Nanorods monodisperse catalytic growth solution phase synthesis 

Supplementary material

12274_2008_8032_MOESM1_ESM.pdf (898 kb)
Supplementary material, approximately 900 KB.

References

  1. [1]
    Alivisatos, A. P. Semiconductor clusters, nano crystals,and quantum dots. Science 1996, 271, 933–937.CrossRefADSGoogle Scholar
  2. [2]
    Hu, J. T.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32, 435–445.CrossRefGoogle Scholar
  3. [3]
    Cozzoli, P. D.; Pellegrino, T.; Manna, L. Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem. Soc. Rev. 2006, 35, 1195–1208.CrossRefPubMedGoogle Scholar
  4. [4]
    Murphy, C. J.; Jana, N. R. Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater. 2002, 14, 80–82.CrossRefGoogle Scholar
  5. [5]
    Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2003, 2, 382–385.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Manna, L.; Scher, E. C.; Alivisatos, A. P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 2000, 122, 12700–12706.CrossRefGoogle Scholar
  8. [8]
    Trentler, T. J.; Goel, S. C.; Hickman, K. M.; Viano, A. M.; Chiang, M. Y.; Beatty, A. M.; Gibbons, P. C.; Buhro, W. E. Solution-liquid-solid growth of indium phosphide fibers from organometallic precursors: Elucidation of molecular and nonmolecular components of the pathway. J. Am. Chem. Soc. 1997, 119, 2172–2181.CrossRefGoogle Scholar
  9. [9]
    Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E. Solution-liquid-solid growth of crystalline III-V semiconductors an analogy to vaporliquid-solid growth. Science 1995, 270, 1791–1794.CrossRefADSGoogle Scholar
  10. [10]
    Kan, S. H.; Aharoni, A.; Mokari, T.; Banin, U. Shape control of III–V semiconductor nanocrystals: Synthesis and properties of InAs quantum rods. Faraday Discuss. 2004, 125, 23–38.CrossRefPubMedGoogle Scholar
  11. [11]
    Hull, K. L.; Grebinski, J. W.; Kosel, T. H.; Kuno, M. Induced branching in confined PbSe nanowires. Chem. Mater. 2005, 17, 4416–4425.CrossRefGoogle Scholar
  12. [12]
    Shi, W. L.; Sahoo, Y.; Zeng, H.; Ding, Y.; Swihart, M. T.; Prasad, P. N. Anisotropic growth of PbSe nanocrystals on Au Fe3O4 hybrid nanoparticles. Adv. Mater. 2006, 18, 1889–1894.CrossRefGoogle Scholar
  13. [13]
    Grebinski, J. W.; Richter, K. L.; Zhang, J.; Kosel, T. H.; Kuno, M. Synthesis and characterization of Au/Bi core/shell nanocrystals: A precursor toward II VI nanowires. J. Phys. Chem. B 2004, 108, 9745–9751.CrossRefGoogle Scholar
  14. [14]
    Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A. Control of thickness and orientation of solution-grown silicon nanowires. Science 2000, 287, 1471–1473.CrossRefPubMedADSGoogle Scholar
  15. [15]
    Zhang, J. Z. Interfacial charge carrier dynamics of colloidal semiconductor nanoparticles. J. Phys. Chem. B 2000, 104, 7239–7253.CrossRefGoogle Scholar
  16. [16]
    Shen, G. Z.; Cho, J. H.; Yoo, J. K.; Yi, G. C.; Lee, C. J. Synthesis of single-crystal CdS microbelts using a modified thermal evaporation method and their photoluminescence. J. Phys. Chem. B 2005, 109, 9294–9298.CrossRefPubMedGoogle Scholar
  17. [17]
    Jang, J. S.; Joshi, U. A.; Lee, J. S. Solvothermal synthesisoc of CdS nanowires for photocatalytic hydrogen and electricity production. J. Phys. Chem. C 2007, 111, 13280–13287.CrossRefGoogle Scholar
  18. [18]
    Duan, X. F.; Niu, C. M.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. High-performance thinfilm transistors using semiconductor nanowires and nanoribbons. Nature 2003, 425, 274–278.CrossRefPubMedADSGoogle Scholar
  19. [19]
    Weinhardt, L.; Gleim, T.; Fuchs, O.; Heske, C.; Umbach, E.; Bar, M.; Muffler, H. J.; Fischer, C. H.; Lux-Steiner, M. C.; Zubavichus, Y.; Niesen, T. P.; Karg, F. CdS and Cd(OH)2 formation during Cd treatments of Cu(In,Ga)(S,Se)2 thin-film solar cell absorbers. Appl. Phys. Lett. 2003, 82, 571.CrossRefADSGoogle Scholar
  20. [20]
    Mandal, S.; Rautaray, D.; Sanyal, A.; Sastry, M. Synthesis and assembly of CdS nanoparticles in Keggin ion colloidal particles as templates. J. Phys. Chem. B 2004, 108, 7126–7131.CrossRefGoogle Scholar
  21. [21]
    Duan, X. F.; Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 2000, 12, 298–302.CrossRefGoogle Scholar
  22. [22]
    Ye, C. H.; Meng, G. W.; Wang, Y. H.; Jiang, Z.; Zhang, L. D. On the growth of CdS nanowires by the evaporation of CdS nanopowders. J. Phys. Chem. B 2002, 106, 10338–10341.CrossRefGoogle Scholar
  23. [23]
    Zhang, M. F.; Drechsler, M.; Muller, A. H. E. Template-controlled synthesis of wire-like cadmium sulfide nanoparticle assemblies within core-shell cylindrical polymer brushes. Chem. Mater. 2004, 16, 537–543.MATHCrossRefGoogle Scholar
  24. [24]
    Xu, D.; Liu, Z. P.; Liang, J. B.; Qian, Y. T. Solvothermal synthesis of CdS nanowires in a mixed solvent of ethylenediamine and dodecanethiol. J. Phys. Chem. B 2005, 109, 14344–14349.CrossRefPubMedGoogle Scholar
  25. [25]
    Carbone, L.; Nobile, C.; De Giorg, M.; Sala, F. D.; Morello, G.; Pompa, P.; Hytch, M.; Snoeck, E.; Fiore, A.; Franchini, I. R.; Nadasan, M.; Silvestre, A. F.; Chiodo, L.; Kudera, S. Cingolani, R.; Krahne, R.; Manna, L. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 2007, 7, 2942–2950.CrossRefPubMedADSGoogle Scholar
  26. [26]
    Lin, H. Y.; Chen, Y. F.; Wu, J. G.; Wang, D. I.; Chen, C. C. Carrier transfer induced photoluminescence change in metal-semiconductor core-shell nanostructures. Appl. Phys. Lett. 2006, 88, 161911.CrossRefADSGoogle Scholar
  27. [27]
    Saunders, A. E.; Popov, I.; Banin, U. Synthesis of hybrid CdS Au colloidal nanostructures. J. Phys. Chem. B 2006, 110, 25421–25429.CrossRefPubMedGoogle Scholar
  28. [28]
    Yong, K. T.; Sahoo, Y.; Swihart, M. T.; Prasad, P. N. Shape control of CdS nanocrystals in one-pot synthesis. J. Phys. Chem. C 2007, 111, 2447–2458.CrossRefGoogle Scholar
  29. [29]
    Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid liquid system. J. Chem. Soc. Chem. Commun. 1994, 801–802.Google Scholar
  30. [30]
    Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H. Dumbbell-like bifunctional Au Fe3O4 nanoparticles. Nano Lett. 2005, 5, 379–382.CrossRefPubMedADSGoogle Scholar
  31. [31]
    Buffat, P.; Borel, J. P. Size effect on melting temperature of gold particles. Phys. Rev. A 1976, 13, 2287–2298.CrossRefADSGoogle Scholar
  32. [32]
    Sakai, H. Surface-induced melting of small particles. Surf. Sci. 1996, 351, 285–291.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringUniversity at Buffalo, SUNYBuffaloUSA
  2. 2.Department of PhysicsUniversity at Buffalo, SUNYBuffaloUSA
  3. 3.Department of PhysicsCapital Normal UniversityBeijingChina

Personalised recommendations