Nano Research

, Volume 1, Issue 4, pp 303–313

Magnetic field-induced solvothermal synthesis of one-dimensional assemblies of Ni-Co alloy microstructures

Open Access
Research Article

Abstract

One-dimensional magnetic Ni-Co alloy microwires with different microstructures and differently shaped building blocks including spherical particles, multilayer stacked alloy plates, and alloy flowers, have been synthesized by an external magnetic field-assisted solvothermal reaction of mixtures of cobalt(II) chloride and nickel(II) chloride in 1, 2-propanediol with different NaOH concentrations. By adjusting the experimental parameters, such as precursor concentration and Ni/Co ratio, Ni-Co alloy chains with uniform diameters in the range 500 nm to 1.3 μm and lengths ranging from several micrometers to hundreds of micrometers can be obtained. A mechanism of formation of the one-dimensional assemblies of magnetic Ni-Co microparticles in a weak external magnetic field is proposed.

Keywords

Ni-Co alloy microstructures magnetic field-induced assembly solvothermal synthesis 

Supplementary material

12274_2008_8031_MOESM1_ESM.pdf (512 kb)
Supplementary material, approximately 512 KB.

References

  1. [1]
    Link, S.; El-Sayed, M. A. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 2003, 54, 331–366.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Lu, A.-H.; Salabas, E. L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007, 46, 1222–1244.CrossRefGoogle Scholar
  3. [3]
    Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 1998, 391, 775–778.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Narayanan, R.; El-Sayed, M. A. Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J. Phys. Chem. B 2005, 109, 12663–12676.CrossRefPubMedGoogle Scholar
  5. [5]
    Toshima, N.; Yonezawa, T. Bimetallic nanoparticles — novel materials for chemical and physical applications. New J. Chem. 1998, 22, 1179–1201.CrossRefGoogle Scholar
  6. [6]
    Luo, X. L.; Morrin, A.; Killard, A. J.; Smyth, M. R. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 2006, 18, 319–326.CrossRefGoogle Scholar
  7. [7]
    Gu, C.; Lian, J.; Jiang, Z. High strength nanocrystalline Ni-Co alloy with enhanced tensile ductility. Adv. Eng. Mater. 2006, 8, 252–256.CrossRefGoogle Scholar
  8. [8]
    Wang, L.; Gao, Y.; Xue, Q.; Liu, H.; Xu, T. Microstructure and tribological properties of electrodeposited Ni-Co alloy deposits. Appl. Surf. Sci. 2005, 242, 326–332.CrossRefADSGoogle Scholar
  9. [9]
    Kritzer, P.; Boukis, N.; Dinjus, E. Review of the corrosion of nickel-based alloys and stainless steels in strongly oxidizing pressurized high-temperature solutions at subcritical and supercritical temperatures. Corrosion 2000, 56, 1093–1104.CrossRefGoogle Scholar
  10. [10]
    Singh, V. B.; Singh, V. N. Electrodeposition of nickel-cobalt alloys from acetate bath. Plat. Surf. Finish. 1976, 63, 34–36.Google Scholar
  11. [11]
    Hibbard, G. D.; Aust, K. T.; Erb, U. Thermal stability of electrodeposited nanocrystalline Ni-Co alloys. Mat. Sci. Eng. A 2006, 433, 195–202.CrossRefGoogle Scholar
  12. [12]
    Domínguez-Crespo, M. A.; Plata-Torres, M.; Torres-Huerta, A. M.; Arce-Estrada, E. M.; Hallen-López, J. M. Kinetic study of hydrogen evolution reaction on Ni30Mo70, Co30Mo70, Co30Ni70 and Co10Ni20Mo70 alloy electrodes. Mater. Charact. 2005, 55, 83–91.CrossRefGoogle Scholar
  13. [13]
    Chi, B.; Li, J.; Yang, X.; Gong, Y.; Wang, N. Deposition of Ni-Co by cyclic voltammetry method and its electrocatalytic properties for oxygen evolution reaction. Int. J. Hydrogen. Energ. 2005, 30, 29–34.CrossRefGoogle Scholar
  14. [14]
    Mercier, D.; Lévy, J.-C. S.; Viau, G.; Fiévet-Vincent, F.; Fiévet, F. Magnetic resonance in spherical Co-Ni and Fe-Co-Ni particles. Phys. Rev. B 2000, 62, 532–544.CrossRefADSGoogle Scholar
  15. [15]
    Masoeroa, A.; Mortenb, B.; Olcesec, G. L.; Prudenziatib, M.; Tangod, F.; Vinai, F. Magnetic properties of Ni-Co thick-film magnetoresistors. Thin Solid Films 1999, 350, 214–218.CrossRefADSGoogle Scholar
  16. [16]
    Atkinson, A.; Barnett, S.; Gorte, R. J.; Irvine, J. T. S.; McEvoy, A. J.; Mogensen, M.; Singhal, S. C.; Vohs, J. Advanced anodes for high-temperature fuel cells. Nat. Mater. 2004, 3, 17–27.CrossRefPubMedADSGoogle Scholar
  17. [17]
    Zhang, L.; Bain, J. A.; Zhu, J.-G.; Abelmann, L.; Onoue, T. Dynamic domain motion of thermal-magnetically formed marks on CoNi/Pt multilayers. J. Appl. Phys. 2006, 100, 053901.CrossRefADSGoogle Scholar
  18. [18]
    Onoue, T.; Siekman, M. H.; Abelmann, L. Heat-assisted magnetic probe recording on a CoNi/Pt multilayered film. J. Magn. Magn. Mater. 2005, 287, 501–506.CrossRefADSGoogle Scholar
  19. [19]
    Golodnitsky, D.; Rosenberg, Y.; Ulus, A. The role of anion additives in the electrodeposition of nickel-cobalt alloys from sulfamate electrolyte. Electrochim. Acta 2002, 47, 2707–2714.CrossRefGoogle Scholar
  20. [20]
    Armyanov, S. Crystallographic structure and magnetic properties of electrodeposited cobalt and cobalt alloys. Electrochim. Acta 2000, 45, 3323–3335.CrossRefGoogle Scholar
  21. [21]
    Aymard, L.; Dumont, B.; Viau, G. Production of Co-Ni alloys by mechanical-alloying. J. Alloy. Compd. 1996, 242, 108–113.CrossRefGoogle Scholar
  22. [22]
    Uzawa, M.; Inoue, A.; Masumoto, T. Morphology and properties of ultrafine Ni-Fe and Ni-Co alloy particles prepared by leaching amorphous Al-Ni-Fe-Ce and Al-Ni-Co-Ce alloys. Mater. Sci. Eng. A 1994, 182, 1179–1183.CrossRefGoogle Scholar
  23. [23]
    Sangregorio, C.; Fernández, C. de J.; Battaglin, G.; De, G.; Gatteschi, D.; Mattei, G.; Mazzoldi, P. Magnetic properties of Co-Ni alloy nanoparticles prepared by the sol gel technique. J. Magn. Magn. Mater. 2004, 272, E1251–E1252.CrossRefADSGoogle Scholar
  24. [24]
    Syukri; Ban, T.; Ohya, Y.; Takahashi, Y. A simple synthesis of metallic Ni and Ni-Co alloy fine powders from a mixed-metal acetate precursor. Mater. Chem. Phys. 2003, 78, 645–649.CrossRefGoogle Scholar
  25. [25]
    Ung, D.; Viau, G.; Ricolleau, C.; Warmont, F.; Gredin, P.; Fiévet, F. CoNi nanowires synthesized by heterogeneous nucleation in liquid polyol. Adv. Mater. 2005, 17, 338–344.CrossRefGoogle Scholar
  26. [26]
    Ung, D.; Soumare, Y.; Chakroune, N.; Viau, G.; Vaulay, M.-J.; Richard, V. Growth of magnetic nanowires and nanodumbbells in liquid polyol. Chem. Mater. 2007, 19, 2084–2094.CrossRefGoogle Scholar
  27. [27]
    Li, Y. D.; Li, L. Q.; Liao, H. W.; Wang, H. R. Preparation of pure nickel, cobalt, nickel-cobalt and nickel-copper alloys by hydrothermal reduction. J. Mater. Chem. 1999, 9, 2675–2677.CrossRefGoogle Scholar
  28. [28]
    Zhu, L.-P.; Xiao, H.-M.; Fu, S.-Y. Surfactant-assisted synthesis and characterization of novel chain-like CoNi alloy assemblies. Eur. J. Inorg. Chem. 2007, 3947–3951.Google Scholar
  29. [29]
    Qin, D. H.; Wang, C. W.; Sun, Q. Y.; Li, H. L. The effects of annealing on the structure and magnetic properties of CoNi patterned nanowire arrays. Appl. Phys. A 2002, 74, 761–765.CrossRefADSGoogle Scholar
  30. [30]
    Zhang, D.-E.; Ni, X.-M.; Zhang, X.-J.; Zheng, H.-G. Synthesis and characterization of Ni-Co needle-like alloys in water-in-oil microemulsion. J. Magn. Magn. Mater. 2006, 302, 290–293.CrossRefADSGoogle Scholar
  31. [31]
    Niu, H. L.; Chen, Q. W.; Ning, M.; Jia, Y. S.; Wang, X. J. Synthesis and one-dimensional self-assembly of acicular nickel nanocrystallites under magnetic fields. J. Phys. Chem. B 2004, 108, 3996–3999.CrossRefGoogle Scholar
  32. [32]
    Sun, L.; Chen, Q.; Tang, Y.; Xiong, Y. Formation of one-dimensional nickel wires by chemical reduction of nickel ions under magnetic fields. Chem. Commun. 2007, 2844–2846.Google Scholar
  33. [33]
    Wang, J.; Chen, Q. W.; Zeng, C.; Hou, B. Y. Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires. Adv. Mater. 2004, 16, 137–140.CrossRefGoogle Scholar
  34. [34]
    He, Z.; Yu, S.-H.; Zhou, X.; Li, X.; Qu, J. Magnetic-field-induced phase-selective synthesis of ferrosulfide microrods by a hydrothermal process: Microstructure control and magnetic properties. Adv. Funct. Mater. 2006, 16, 1105–1111.CrossRefGoogle Scholar
  35. [35]
    Zeng, J.; Huang, J.; Lu, W.; Wang, X.; Wang, B.; Zhang, S.; Hou, J. Necklace-like noble-metal hollow nanoparticle chains: Synthesis and tunable optical properties. Adv. Mater. 2007, 19, 2172–2176.CrossRefGoogle Scholar
  36. [36]
    Sun, J.; Zhang, Y.; Chen, Z.; Zhou, J.; Gu, N. Fibrous aggregation of magnetite nanoparticles induced by a time-varied magnetic field. Angew. Chem. Int. Ed. 2007, 46, 4767–4770.CrossRefGoogle Scholar
  37. [37]
    Commeinhes, X.; Davidson, P.; Bourgaux, C.; Livage, J. Orientation of liquid-crystalline suspensions of vanadium pentoxide ribbons by a magnetic field. Adv. Mater. 1997, 9, 900–903.CrossRefGoogle Scholar
  38. [38]
    Kimura, T.; Sato, Y.; Kimura, F.; Iwasaka, M.; Ueno, S. Micropatterning of cells using modulated magnetic fields. Langmuir 2005, 21, 830–832.CrossRefPubMedGoogle Scholar
  39. [39]
    Garmestani, H.; Al-Haik, M. S.; Dahmen, K.; Tannenbaum, R.; Li, D.; Sablin, S. S.; Hussaini, M. Y. Polymer-mediated alignment of carbon nanotubes under high magnetic fields. Adv. Mater. 2003, 15, 1918–1921.CrossRefGoogle Scholar
  40. [40]
    Kimura, T.; Yamato, M.; Nara, A. Particle trapping and undulation of a liquid surface using a microscopically modulated magnetic field. Langmuir 2004, 20, 572–574.CrossRefPubMedGoogle Scholar
  41. [41]
    Hu, M. J.; Lu, Y.; Zhang, S.; Guo, S. R.; Lin, B.; Zhang, M.; Yu, S. H. High yield synthesis of bracelet-like hydrophilic Ni-Co magnetic alloy flux-closure nanorings. J. Am. Chem. Soc. 2008, 130, 11606–11607.CrossRefPubMedGoogle Scholar
  42. [42]
    Mattei, G.; de Julian Fernández, C.; Mazzoldi, P.; Sada, C. Synthesis, structure, and magnetic properties of Co, Ni, and Co-Ni alloy nanocluster-doped SiO2 films by sol-gel processing. Chem. Mater. 2002, 14, 3440–3447.CrossRefGoogle Scholar
  43. [43]
    Henglein, A.; Giersig, M. Radiolytic formation of colloidal tin and tin-gold particles in aqueous solution. J. Phys. Chem. 1994, 98, 6931–6935.CrossRefGoogle Scholar
  44. [44]
    Jiang, H.; Moon, K.-S.; Wong, C. P. Synthesis of Ag-Cu alloy nanoparticles for lead-free interconnect materials. Proceedings of the 2005 IEEE/CPMT 10th International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, Beckman Center, Irvine, CA, March, 2005(CD-ROM only); ISBN 0-7803-9085-7.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, School of Chemistry and MaterialsUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations