Skip to main content
Log in

Magnetic and Structural Characterizations of Co-based Heusler Nanoparticles Fabricated via Simple Co-precipitation Method

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Nanoparticles of Co2FeAl magnetic alloy was successfully fabricated in the presence of a well-known capping agent, polyvinyl alcohol, as a polymer template. The magnetic properties were studied using hysteresis curve and first-order reversal curve (FORC) measurements at room temperature. FORC diagrams demonstrated a wide distribution of the coercive field owing to the presence of different particle sizes in products. TEM image also showed that the synthesized samples are composed of some large clusters containing a few smaller particles. The maximum value of magnetization (~76 emu/g) and coercivity (573 Oe) were obtained in the annealed sample with 5 °C/min. A wider distribution of grain size with a smaller average of 20.5 nm as well as lower-degree of crystallinity was observed in the sample annealed with higher rate of 10 °C/min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. S. Chaubey, C. Barcena, N. Poudyal, C. Rong, J. Gao, S. Sun, and J. Ping (2007). J. Am. Chem. Soc. 129, 7214–7215.

    Article  CAS  Google Scholar 

  2. S. Alikhanzadeh-Arani, M. Salavati-Niasari, and M. Almasi-Kashi (2012). J. Magn. Magn. Mater. 324, 3652–3657.

    Article  CAS  Google Scholar 

  3. J. Y. Chen, H. R. Liu, N. Ahmad, Y. L. Li, Z. Y. Chen, W. P. Zhou, and X. F. Han (2011). Effect of external magnetic field on magnetic properties of Co–Pt nanotubes and nanowires. J. Appl. Phys. 109, 07E157-1–07E157-3.

    Google Scholar 

  4. H. Nishihara, N. Okui, A. Okubo, T. Kanomata, R. Y. Umetsu, R. Kainuma, and T. Sakon (2013). J. Alloys Compd. 551, 208–211.

    Article  CAS  Google Scholar 

  5. T. Li, J. Duan, C. Yang, and X. Kou (2013). Micro Nano Lett. 8, 143–146.

    Article  CAS  Google Scholar 

  6. M. Hakimi, P. Kameli, and H. Salamati (2010). J. Magn. Magn. Mater. 322, 3443–3446.

    Article  CAS  Google Scholar 

  7. K. R. Sapkota, P. Gyawali, A. Forbes, I. L. Pegg, and J. Philip (2012). J. Appl. Phys. 111, 123906-1–123906-4.

    Article  Google Scholar 

  8. J. H. Du, Y. L. Zuo, Z. Wang, J. H. Ma, and L. Xi (2013). J. Mater. Sci. Technol. 29, 1–4.

    Article  Google Scholar 

  9. G. Kianpour, M. Salavati-Niasari, and H. Emadi (2013). Superlattices Microstruct. 58, 120–129.

    Article  CAS  Google Scholar 

  10. D. Ghanbari, M. Salavati-Niasari, and M. Sabet (2013). Compos. Part B 45, 550–555.

    Article  CAS  Google Scholar 

  11. E. Fonseca dos Reis, F. S. Campos, A. P. Lage, R. C. Leite, L. G. Heneine, W. L. Vasconcelos, and Z. I. Portela (2006). J. Mater. Res. 9, 185–191.

    Article  CAS  Google Scholar 

  12. E. Hosseini Nezhad, M. Ghorbani, M. Zeinalkhani, and A. Heidari (2013). Am. J. Chem. 3, 6–9.

    Google Scholar 

  13. S. Alikhanzadeh-Arani, M. Salavati-Niasari, and M. Almasi-Kashi (2013). Phys. C 488, 30–34.

    Article  CAS  Google Scholar 

  14. A. Kumar and P. C. Srivastava (2013). Mat. Sci. Pol. 3, 1501–1505.

    Google Scholar 

  15. Y. Takamura, R. Nakane, and S. Sugahara (2010). J. Appl. Phys. 107, 09B111-1–09B111-3.

    Article  Google Scholar 

  16. S. Alikhanzadeh-Arani, M. Kargar, and M. Salavati-Niasari (2014). J. Alloys Compd. 614, 35–39.

    Article  CAS  Google Scholar 

  17. S. Alikhanzadeh-Arani, M. Almasi-Kashi, and A. Ramazani (2013). Curr. Appl. Phys. 13, 664–669.

    Article  Google Scholar 

  18. I. Panagiotopoulos (2011). J Magn Magn Mater 323, 2148–2153.

    Article  CAS  Google Scholar 

  19. A. M. Hirt, G. A. Sotiriou, P. R. Kidambi, and A. Teleki (2014). J. Appl. Phys. 115, 044314-1–044314-9.

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the University of Kashan for providing financial support to undertake this work by Grant No. (159271/331).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Salavati-Niasari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pezeshki-Nejad, Z., Almasi-Kashi, M., Alikhanzadeh-Arani, S. et al. Magnetic and Structural Characterizations of Co-based Heusler Nanoparticles Fabricated via Simple Co-precipitation Method. J Clust Sci 27, 1031–1039 (2016). https://doi.org/10.1007/s10876-015-0891-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0891-9

Keywords

Navigation