Skip to main content
Log in

Post-translational modification of the death receptor complex as a potential therapeutic target in cancer

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Programmed cell death is critical to the physiological function of multi-cellular organisms, controlling development, immunity, inflammation, and cancer progression. Death receptor (DR)-mediated regulation of a protease functions as a second messenger to initiate a death signal cascade to induce apoptosis or necroptosis. Recently, it has become clear that post-translational modifications (PTMs) of signaling components in the DR complex are highly complex, temporally controlled, and tightly regulated, and play an important role in cell death signaling. This review focuses on the molecular mechanisms and pathophysiological consequences of PTMs on the formation of the DR signaling complex, especially with respect to tumor necrosis factor receptor 1 (TNFR1). Furthermore, characterization of the role of PTMs in spatially different TNFR1 complexes (complexes I and II), especially with respect to the role of ubiquitination and phosphorylation of receptor interacting protein 1 (RIP1) in programmed cell death in cancer cells, will be reviewed. By integrating recently gained insight of the functional importance of PTMs in complex I or II, this review discusses how the concerted action of PTMs results in life or death upon DR ligation. Finally, the emerging concept of a sequential cell death checkpoint by the PTMs of RIP1, which may reveal novel therapeutic opportunities for the treatment of some cancers, will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alameda JP, Fernández-Aceñero MJ, Moreno-Maldonado R, Navarro M, Quintana R, Page A, Ramírez A, Bravo A, Casanova ML (2011) CYLD regulates keratinocyte differentiation and skin cancer progression in humans. Cell Death Dis. 2:e208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annibaldi A, Meier P (2018) Checkpoints in TNF-induced cell death: implications in inflammation and cancer. Trends Mol Med 24:49–65

    Article  CAS  PubMed  Google Scholar 

  • Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  CAS  PubMed  Google Scholar 

  • Bagnoli M, Canevari S, Mezzanzanica D (2010) Cellular FLICE-inhibitory protein (c-FLIP) signalling: a key regulator of receptor-mediated apoptosis in physiologic context and in cancer. Int J Biochem Cell Biol 42:210–213

    Article  CAS  PubMed  Google Scholar 

  • Baker SJ, Reddy EP (1998) Modulation of life and death by the TNF receptor superfamily. Oncogene 17:3261–3270

    Article  PubMed  Google Scholar 

  • Balkwill F (2009) Tumour necrosis factor and cancer. Nat Rev Cancer 9:361–371

    Article  CAS  PubMed  Google Scholar 

  • Barbero S, Barilà D, Mielgo A, Stagni V, Clair K, Stupack D (2008) Identification of a critical tyrosine residue in caspase 8 that promotes cell migration. J Biol Chem 283:13031–13034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Jaquith JB, Morris SJ, Barker PA (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30:689–700

    Article  CAS  PubMed  Google Scholar 

  • Blackwell K, Zhang L, Workman LM, Ting AT, Iwai K, Habelhah H (2013) Two coordinated mechanisms underlie tumor necrosis factor alpha-induced immediate and delayed IκB kinase activation. Mol Cell Biol 33:1901–1915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boisson B, Laplantine E, Prando C, Giliani S, Israelsson E, Xu Z, Abhyankar A, Israël L, Trevejo-Nunez G, Bogunovic D, Cepika A-M, MacDuff D, Chrabieh M, Hubeau M, Bajolle F, Debré M, Mazzolari E, Vairo D, Agou F, Virgin HW, Bossuyt X, Rambaud C, Facchetti F, Bonnet D, Quartier P, Fournet J-C, Pascual V, Chaussabel D, Notarangelo LD, Puel A, Israël A, Casanova J-L, Picard C (2012) Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat Immunol 13(12):1178–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner D, Blaser H, Mak TW (2015) Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol 15:362–374

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Goeddel DV (2002) TNF-R1 signaling: a beautiful pathway. Science 296:1634–1635

    Article  CAS  PubMed  Google Scholar 

  • Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33:275–286

    Article  CAS  PubMed  Google Scholar 

  • Chinnaiyan AM, O'Rourke K, Tewari M, Dixit VM (1995) FADD, a novel death domain-containing protein, interacts with the death domain of fas and initiates apoptosis. Cell 81(4):505–512

    Article  CAS  PubMed  Google Scholar 

  • Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C, Wachsmuth L, Eftychi C, Lin J, Corona T, Hermance N, Zelic M, Kirsch P, Basic M, Bleich A, Kelliher M, Pasparakis M (2014) RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513:90–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Melo J, Tang D (2015) Elevation of SIPL1 (SHARPIN) increases breast cancer risk. PLoS ONE 10:e0127546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degterev A, Maki JL, Yuan Y (2013) Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase. Cell Death Differ 20:366

    Article  CAS  PubMed  Google Scholar 

  • Dondelinger Y, Aguileta MA, Goossens V, Dubuisson C, Grootjans S, Dejardin E, Vandenabeele P, Bertrand MJ (2013) RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. Cell Death Differ 20:1381–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dondelinger Y, Jouan-Lanhouet S, Divert T, Theatre E, Bertin J, Gough PJ, Giansanti P, Heck AJ, Dejardin E, Vandenabeele P, Bertrand MJ (2015) NF-κB-independent role of IKKα/IKKβ in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. Mol Cell 60:63–76

    Article  CAS  PubMed  Google Scholar 

  • Dondelinger Y, Delanghe T, Rojas-Rivera D, Priem D, Delvaeye T, Bruggeman I, Van Herreweghe F, Vandenabeele P, Bertrand MJM (2017) MK2 phosphorylation of RIPK1 regulates TNF-mediated cell death. Nat Cell Biol 19:1237–1247

    Article  CAS  PubMed  Google Scholar 

  • Dynek JN, Goncharov T, Dueber EC, Fedorova AV, Izrael-Tomasevic A, Phu L, Helgason E, Fairbrother WJ, Deshayes K, Kirkpatrick DS, Vucic D (2010) c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J 29:4198–4209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dziedzic SA, Su Z, Jean Barrett V, Najafov A, Mookhtiar AK, Amin P, Pan H, Sun L, Zhu H, Ma A, Abbott DW, Yuan J (2018) ABIN-1 regulates RIPK1 activation by linking Met1 ubiquitylation with Lys63 deubiquitylation in TNF-RSC. Nat Cell Biol 20:58–68

    Article  CAS  PubMed  Google Scholar 

  • Ea C-K, Deng L, Xia Z-P, Pineda G, Chen ZJ (2006) Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 22(2):245–257

    Article  CAS  PubMed  Google Scholar 

  • Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C, Hupe M, Cain K, MacFarlane M, Häcker G, Leverkus M (2011) cIAPs block ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 43:449–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu T, Lv X, Kong Q, Yuan CA (2017) novel SHARPIN-PRMT5-H3R2me1 axis is essential for lung cancer cell invasion. Oncotarget 8:54809–54820

    PubMed  PubMed Central  Google Scholar 

  • Fulda S (2015) Promises and challenges of smac mimetics as cancer therapeutics. Clin Cancer Res 21:5030–5036

    Article  CAS  PubMed  Google Scholar 

  • Geng J, Ito Y, Shi L, Amin P, Chu J, Ouchida AT, Mookhtiar AK, Zhao H, Xu D, Shan B, Najafov A, Gao G, Akira S, Yuan J (2017) Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis. Nat Commun 8:359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gentle IE, Wong WW, Evans JM, Bankovacki A, Cook WD, Khan NR, Nachbur U, Rickard J, Anderton H, Moulin M, Lluis JM, Moujalled DM, Silke J, Vaux DL (2011) In TNF-stimulated cells, RIPK1 promotes cell survival by stabilizing TRAF2 and cIAP1, which limits induction of non-canonical NF-kappaB and activation of caspase-8. J Biol Chem 286:13282–13291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafsson N, Zhao C, Gustafsson JA, Dahlman-Wright K (2010) RBCK1 drives breast cancer cell proliferation by promoting transcription of estrogen receptor alpha and cyclin B1. Cancer Res 70:1265–1274

    Article  CAS  PubMed  Google Scholar 

  • Haas TL, Emmerich CH, Gerlach B, Schmukle AC, Cordier SM, Rieser E, Feltham R, Vince J, Warnken U, Wenger T, Koschny R, Komander D, Silke J, Walczak H (2009) Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol Cell 36:831–844

    Article  CAS  PubMed  Google Scholar 

  • Häcker H, Karin M (2006) Regulation and function of IKK and IKK-related kinases. Sci STKE 357:re13

    Google Scholar 

  • Hellerbrand C, Bumes E, Bataille F, Dietmaier W, Massoumi R, Bosserhoff AK (2007) Reduced expression of CYLD in human colon and hepatocellular carcinomas. Carcinogenesis 28:21–27

    Article  CAS  PubMed  Google Scholar 

  • Hsu H, Shu HB, Pan MG, Goeddel DV (1996) TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84:299–308

    Article  CAS  PubMed  Google Scholar 

  • Hughes MA, Powley IR, Jukes-Jones R, Horn S, Feoktistova M, Fairall L, Schwabe JW, Leverkus M, Cain K, MacFarlane M (2016) Co-operative and hierarchical binding of c-FLIP and caspase-8: a unified model defines how c-FLIP isoforms differentially control cell fate. Mol Cell 61:834–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda F, Deribe YL, Skånland SS, Stieglitz B, Grabbe C, Franz-Wachtel M, van Wijk SJ, Goswami P, Nagy V, Terzic J, Tokunaga F, Androulidaki A, Nakagawa T, Pasparakis M, Iwai K, Sundberg JP, Schaefer L, Rittinger K, Macek B, Dikic I (2011) SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471:637–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaco I, Annibaldi A, Lalaoui N, Wilson R, Tenev T, Laurien L, Kim C, Jamal K, Wicky John S, Liccardi G, Chau D, Murphy JM, Brumatti G, Feltham R, Pasparakis M, Silke J, Meier P (2017) MK2 phosphorylates RIPK1 to prevent TNF-induced cell death. Mol Cell 6:698–710

    Article  CAS  Google Scholar 

  • Jenner MW, Leone PE, Walker BA, Ross FM, Johnson DC, Gonzalez D, Chiecchio L, Dachs Cabanas E, Dagrada GP, Nightingale M, Protheroe RK, Stockley D, Else M, Dickens NJ, Cross NC, Davies FE, Morgan GJ (2007) Gene mapping and expression analysis of 16q loss of heterozygosity identifies WWOX and CYLD as being important in determining clinical outcome in multiple myeloma. Blood 110:3291–3300

    Article  CAS  PubMed  Google Scholar 

  • Kanayama A, Seth RB, Sun L, Ea CK, Hong M, Shaito A, Chiu YH, Deng L, Chen ZJ (2004) TAB 2 and TAB 3 activate the NF-κB pathway through binding to polyubiquitin chains. Mol Cell 15:535–548

    Article  CAS  PubMed  Google Scholar 

  • Karin M, Lin A (2002) NF-kappaB at the crossroads of life and death. Nat Immunol 3:221–227

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Sanada M, Kato I, Sato Y, Takita J, Takeuchi K, Niwa A, Chen Y, Nakazaki K, Nomoto J, Asakura Y, Muto S, Tamura A, Iio M, Akatsuka Y, Hayashi Y, Mori H, Igarashi T, Kurokawa M, Chiba S, Mori S, Ishikawa Y, Okamoto K, TobinaiK Nakagama H, Nakahata T, Yoshino T, Kobayashi Y, Ogawa S (2009) Frequent inactivation of A20 in B-cell lymphomas. Nature 459:712–716

    Article  CAS  PubMed  Google Scholar 

  • Kavuri SM, Geserick P, Berg D, Dimitrova DP, Feoktistova M, Siegmund D, Gollnick H, Neumann M, Wajant H, Leverkus M (2011) Cellular FLICE-inhibitory protein (cFLIP) isoforms block CD95- and TRAIL death receptor-induced gene induction irrespective of processing of caspase-8 or cFLIP in the death-inducing signaling complex. J Biol Chem 286:16631–16646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kersse K, Verspurten J, Vanden Berghe T, Vandenabeele P (2011) The death-fold superfamily of homotypic interaction motifs. Trends Biochem Sci 36:541–552

    Article  CAS  PubMed  Google Scholar 

  • Kharman-Biz A, Gao H, Ghiasvand R, Haldosen L-A, Zendehdel K, Ahmad A (2018) Expression of the three components of linear ubiquitin assembly complex in breast cancer. PLOS ONE 13(5):e0197183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kischkel FC, Hellbardt S, Behrmann I (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14:5579–5588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi T, Masoumi KC, Massoumi R (2015) Deubiquitinating activity of CYLD is impaired by SUMOylation in neuroblastoma cells. Oncogene 34:2251–2260

    Article  CAS  PubMed  Google Scholar 

  • Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229

    Article  CAS  PubMed  Google Scholar 

  • Lalaoui N, Hänggi K, Brumatti G, Chau D, Nguyen NY, Vasilikos L, DA SpilgiesLM Heckmann, Ma C, Ghisi M, Salmon JM, Matthews GM, de Valle E, Moujalled DM, Menon MB, Spall SK, Glaser SP, Richmond J, Lock RB, Condon SM, Gugasyan R, Gaestel M, Guthridge M, Johnstone RW, Munoz L, Wei A, Ekert PG, Vaux DL, Wong WW, Silke J (2016) Targeting p38 or MK2 enhances the anti-leukemic activity of smac-mimetics. Cancer Cell 29:145–158

    Article  CAS  PubMed  Google Scholar 

  • Lee HW, Lee SH, Lee HW, Ryu YW, Kwon MH, Kim YS (2005) Homomeric and heteromeric interactions of the extracellular domains of death receptors and death decoy receptors. Biochem Biophys Res Commun 330:1205–1212

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Van Antwerp D, Mercurio F, Lee KF, Verma IM (1999) Severe liver degeneration in mice lacking the IkappaB kinase 2 gene. Science 284:321–325

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Fan C, Zhang Y, Yu X, Wu X, Zhang X, Zhao Q, Zhang H, Xie Q, Li M, Li X, Ding Q, Ying H, Li D, Zhang H (2017) RIP1 kinase activity-dependent roles in embryonic development of Fadd-deficient mice. Cell Death Differ 24:1459–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menon MB, Gropengießer J, Fischer J, Novikova L, Deuretzbacher A, Lafera J, Schimmeck H, Czymmeck N, Ronkina N, Kotlyarov A, Aepfelbacher M, Gaestel M, Ruckdeschel K (2017) p38MAPK/MK2 dependent phosphorylation controls cytotoxic RIPK1 signaling in inflammation and infection. Nat Cell Biol 19:1248–1259

    Article  CAS  PubMed  Google Scholar 

  • Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190

    Article  CAS  PubMed  Google Scholar 

  • Najjar M, Suebsuwong C, Ray SS, Thapa RJ, Maki JL, Nogusa S, Shah S, Saleh D, Gough PJ, Bertin J, Yuan J, Balachandran S, Cuny GD, Degterev A (2015) Structure guided design of potent and selective ponatinib-based hybrid inhibitors for RIPK1. Cell Rep 10:1850–1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayan N, Lee IH, Borenstein R, Sun J, Wong R, Tong G, Fergusson MM, Liu J, Rovira II, Cheng HL, Wang G, Gucek M, Lombard D, Alt FW, Sack MN, Murphy E, Cao L, Finkel T (2012) The NAD-dependent deacetylase SIRT2 is required for programmed necrosis. Nature 492:199–204

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell MA, Legarda-Addison D, Skountzos P, Yeh WC, Ting AT (2007) Ubiquitination of RIP1 regulates an NF-kappaB-independent cell-death switch in TNF signaling. Curr Biol 17:418–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oztürk S, Schleich K, Lavrik IN (2012) Cellular FLICE-like inhibitory proteins (c-FLIPs): fine-tuners of life and death decisions. Exp Cell Res 318:1324–1331

    Article  CAS  PubMed  Google Scholar 

  • Peltzer N, Rieser E, Taraborrelli L, Draber P, Darding M, Pernaute B, Shimizu Y, Sarr A, Draberova H, Montinaro A, Martinez-Barbera JP, Silke J, Rodriguez TA, Walczak H (2014) HOIP deficiency causes embryonic lethality by aberrant TNFR1-mediated endothelial cell death. Cell Rep 9:153–165

    Article  CAS  PubMed  Google Scholar 

  • Pennarun B, Meijer A, de Vries EG, Kleibeuker JH, Kruyt F, de Jong S (2010) Playing the DISC: turning on TRAIL death receptor-mediated apoptosis in cancer. Biochim Biophys Acta 1805:123–140

    CAS  PubMed  Google Scholar 

  • Pham CG, Bubici C, Zazzeroni F, Papa S, Jones J, Alvarez K, Jayawardena S, De Smaele E, Cong R, Beaumont C, Torti FM, Torti SV, Franzoso G (2004) Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell 119:529–542

    Article  CAS  PubMed  Google Scholar 

  • Powley IR, Hughes MA, Cain K, MacFarlane M (2016) Caspase-8 tyrosine-380 phosphorylation inhibits CD95 DISC function by preventing procaspase-8 maturation and cycling within the complex. Oncogene 35:5629–5640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieser E, Cordier SM, Walczak H (2013) Linear ubiquitination: a newly discovered regulator of cell signalling. Trends Biochem Sci 38:94–102

    Article  CAS  PubMed  Google Scholar 

  • Tada K, Okazaki T, Sakon S, Kobarai T, Kurosawa K, Yamaoka S, Hashimoto H, Mak TW, Yagita H, Okumura K, Yeh WC, Nakano H (2001) Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-kappa B activation and protection from cell death. J Biol Chem 276:36530–36534

    Article  CAS  PubMed  Google Scholar 

  • Takahashi N, Duprez L, Grootjans S, Cauwels A, Nerinckx W, DuHadaway JB, Goossens V, Roelandt R, Van Hauwermeiren F, Libert C, Declercq W, Callewaert N, Prendergast GC, Degterev A, Yuan J, Vandenabeele P (2012) Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis 29:e437

    Article  CAS  Google Scholar 

  • Takahashi N, Vereecke L, Bertrand MJ, Duprez L, Berger SB, Divert T, Gonçalves A, Sze M, Gilbert B, Kourula S, Goossens V, Lefebvre S, Günther C, Becker C, Bertin J, Gough PJ, Declercq W, van Loo G, Vandenabeele P (2014) RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature 513:95–99

    Article  CAS  PubMed  Google Scholar 

  • Tamiya H, Kim H, Klymenko O, Kim H, Feng Y, Zhang T, Han JY, Murao A, Snipas SJ, Jilaveanu L, Brown K, Kluger H, Zhang H, Iwai K, Ronai ZA (2018) SHARPIN-mediated regulation of protein arginine methyltransferase 5 controls melanoma growth. J Clin Invest 128:517–530

    Article  PubMed  Google Scholar 

  • Tang G, Minemoto Y, Dibling B, Purcell NH, Li Z, Karin M, Lin A (2001) Inhibition of JNK activation through NF-kappaB target genes. Nature 414:313–317

    Article  CAS  PubMed  Google Scholar 

  • Tokunaga F, Iwai K (2012) LUBAC, a novel ubiquitin ligase for linear ubiquitination, is crucial for inflammation and immune responses. Microbes Infect 14:563–572

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya Y, Nakabayashi O, Nakano H (2015) FLIP the switch: regulation of apoptosis and necroptosis by cFLIP. Int J Mol Sci 16:30321–30341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tummers B, Green DR (2017) Caspase-8: regulating life and death. Immunol Rev 277:76–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27:693–733

    Article  CAS  PubMed  Google Scholar 

  • Vandenabeele P, Declercq W, Van Herreweghe F, Vanden Berghe T (2010) The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci Signal 3:re4

    Article  CAS  PubMed  Google Scholar 

  • Vanlangenakker N, Bertrand MJ, Bogaert P, Vandenabeele P, Vanden Berghe T (2011a) TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members. Cell Death Dis 17:e230

    Article  CAS  Google Scholar 

  • Vanlangenakker N, Vanden Berghe T, Bogaert P, Laukens B, Zobel K, Deshayes K, Vucic D, Fulda S, Vandenabeele P, Bertrand MJ (2011b) cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death Differ 18:656–665

    Article  CAS  PubMed  Google Scholar 

  • Varfolomeev E, Vucic D (2008) (Un)expected roles of c-IAPs in apoptotic and NFkappaB signaling pathways. Cell Cycle 7:1511–1521

    Article  CAS  PubMed  Google Scholar 

  • Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN, Zobel K, Deshayes K, Fairbrother WJ, Vucic D (2008) c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. J Biol Chem 283:24295–24299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlantis K, Wullaert A, Polykratis A, Kondylis V, Dannappel M, Schwarzer R, Welz P, Corona T, Walczak H, Weih F, Klein U, Kelliher M, Pasparakis M (2016) NEMO prevents RIP kinase 1-mediated epithelial cell death and chronic intestinal inflammation by NF-κB-dependent and -independent functions. Immunity 44:553–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner KW, Punnoose EA, Januario T, Lawrence DA, Pitti RM, Lancaster K, Lee D, von Goetz M, Yee SF, Totpal K, Huw L, Katta V, Cavet G, Hymowitz SG, Amler L, Ashkenazi A (2007) Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat Med 13:1070–1077

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412:346–351

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Du F, Wang X (2008) TNF-α induces two distinct caspase-8 activation pathways. Cell 133:693–703

    Article  CAS  PubMed  Google Scholar 

  • Weinlich R, Brunner T, Amarante-Mendes GP (2010) Control of death receptor ligand activity by posttranslational modifications. Cell Mol Life Sci 67:1631–1642

    Article  CAS  PubMed  Google Scholar 

  • Won M, Park KA, Byun HS, Sohn KC, Kim YR, Jeon J, Hong JH, Park J, Seok JH, Kim JM, Yoon WH, Jang IS, Shen HM, Liu ZG, Hur GM (2010) Novel anti-apoptotic mechanism of A20 through targeting ASK1 to suppress TNF-induced JNK activation. Cell Death Differ 17:1830–1841

    Article  CAS  PubMed  Google Scholar 

  • Won M, Byun HS, Park KA, Hur GM (2016) Post-translational control of NF-κB signaling by ubiquitination. Arch Pharm Res 39:1075–1084

    Article  CAS  PubMed  Google Scholar 

  • Yin Q, Lamothe B, Darnay BG, Wu H (2009) Structural basis for the lack of E2 interaction in the RING domain of TRAF2. Biochemistry 48:10558–19567

    Article  CAS  PubMed  Google Scholar 

  • Yoon HK, Byun HS, Lee H, Jeon J, Lee Y, Li Y, Jin EH, Kim J, Hong JH, Kim JH, Seok JH, Kang SW, Lee WH, Hur GM (2013) Intron-derived aberrant splicing of A20 transcript in rheumatoid arthritis. Rheumatology (Oxford) 52:427–437

    Article  CAS  Google Scholar 

  • Zhang L, Blackwell K, Shi Z, Habelhah H (2010) The RING domain of TRAF2 plays an essential role in the inhibition of TNFα-induced cell death but not in the activation of NF-κB. J Mol Biol 396:528–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Park KA, Li Y, Byun HS, Jeon J, Lee Y, Hong JH, Kim JM, Huang SM, Choi SW, Kim SH, Sohn KC, Ro H, Lee JH, Lu T, Stark GR, Shen HM, Liu ZG, Park J, Hur GM (2013) PHF20 regulates NF-κB signalling by disrupting recruitment of PP2A to p65. Nat Commun 4:2062

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Ma CA, Wu L, Iwai K, Ashwell JD, Oltz EM, Ballard DW, Jain A (2015) CYLD and the NEMO zinc finger regulate tumor necrosis factor signaling and early embryogenesis. J Biol Chem 290:22076–22084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Yu X, Zhang H, Liu Y, Zhang X, Wu X, Xie Q, Li M, Ying H, Zhang H (2017) RIPK3 mediates necroptosis during embryonic development and postnatal inflammation in FADD-deficient mice. Cell Rep 19:798–808

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (Grant Nos. 2017R1A2A1A05001225, 2017R1A5A2015385).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Min Hur.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, K., Lee, SR., Piao, X. et al. Post-translational modification of the death receptor complex as a potential therapeutic target in cancer. Arch. Pharm. Res. 42, 76–87 (2019). https://doi.org/10.1007/s12272-018-01107-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-018-01107-8

Keywords

Navigation