Skip to main content

Advertisement

Log in

Polymeric vehicles for topical delivery and related analytical methods

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Recently a variety of polymeric vehicles, such as micelles, nanoparticles, and polymersomes, have been explored and some of them are clinically used to deliver therapeutic drugs through skin. In topical delivery, the polymeric vehicles as drug carrier should guarantee non-toxicity, long-term stability, and permeation efficacy for drugs, etc. For the development of the successful topical delivery system, it is of importance to develop the polymeric vehicles of well-defined intrinsic properties, such as molecular weights, HLB, chemical composition, topology, specific ligand conjugation and to investigate the effects of the properties on drug permeation behavior. In addition, the role of polymeric vehicles must be elucidated in in vitro and in vivo analyses. This article describes some important features of polymeric vehicles and corresponding analytical methods in topical delivery even though the application span of polymers has been truly broad in the pharmaceutical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ASMs:

Amphiphilic star-like macromolecules

BSA:

Bovine serum albumin

CAB:

Cellulose acetate butyrate

CBZ:

Carbamazepine

CLSM:

Confocal laser scanning microscopy

CAC:

Critical aggregation concentration

CMC:

Critical micelle concentration

CsA:

Cyclosporin A

DEE:

Drug encapsulation efficiency

DTO–SA:

Desaminotyrosyl tyrosine octyl esters–suberic diacids

EPM:

Enalapril maleate

FDC:

Franz diffusion cell

FITC:

Fluorescein isothiocyanate

HDV:

Hydrodynamic volume

HEMA:

2-Hydroxyethyl methacrylate

HLB:

Hydrophile–lipophile balance

HPLC:

High performance liquid chromatography

LRP:

Living radical polymerization

MAMA:

9-(Methylaminomethyl)anthracene

Mn:

The number average molecular weight

MW:

Molecular weight

Nagg :

Aggregation number

NR:

Nile red, dye

NSAID:

Non-steroidal anti-inflammatory drugs

OMC:

Octyl methoxycinnamate

PAMAM:

Polyamidoamine

PAsn-g-PCL:

Poly(aspargine)-graft-poly(caprolactone)

PCL:

Poly(ε-caprolactone)

PEEP–PCL–PEEP:

Poly(ethyl ethylene phosphate)–poly(E-caprolactone)–poly(ethyl ethylene phosphate)

PEG:

Poly(ethylene glycol)

PGA:

Poly(glycolic acid)

PHB:

Polyhydroxybutyrate

PLA:

Poly(lactic acid)

PLGA:

Poly(lactic-co-glycolic acid)

PMM:

Poly(methylidene malonate)

PPG:

Poly(propylene glycol)

PPO:

Polypropylene oxide

PS:

Poly(styrene)

PTX:

Paclitaxel

ROP:

Ring opening polymerization

SC:

Stratum corneum

SDS:

Sodium dodecyl sulfate

Sn(Oct)2 :

Stannous octoate

ST:

Styrene

TEWL:

Transdermal water loss

VE:

Viable epidermis

References

  • Alvarez-Roman, R., A. Naik, Y.N. Kalia, H. Fessi, and R.H. Guy. 2004. Visualization of skin penetration using confocal laser scanning microscopy. European Journal of Pharmaceutics and Biopharmaceutics 58: 301–316.

    Article  PubMed  CAS  Google Scholar 

  • Aqil, M., I. Bhavna, Y. Chowdhary, S. Sultana, S. Talegaonkar, F.J. Ahmad, and M.M. Ali. 2008. Transdermal therapeutic system of enalapril maleate using piperidine as penetration enhancer. Current Drug Delivery 5: 148–152.

    Article  PubMed  CAS  Google Scholar 

  • Bajpai, S.K., S. Saxena, and S. Dubey. 2006. The flow-through diffusion cell (FTDC) method: A novel approach to in vitro drug release studies. Polymer International 55: 12–18.

    Article  CAS  Google Scholar 

  • Banga, A.K., S. Bose, and T.K. Ghosh. 1999. Iontophoresis and electroporation: Comparisons and contrasts. International Journal of Pharmaceutics 179: 1–19.

    Article  PubMed  CAS  Google Scholar 

  • Bencini, M., E. Ranucci, P. Ferruti, F. Trotta, M. Donalisio, M. Cornaglia, D. Lembo, and R. Cavalli. 2008. Preparation and in vitro evaluation of the antiviral activity of the Acyclovir complex of a beta-cyclodextrin/poly(amidoamine) copolymer. Journal of Controlled Release 126: 17–25.

    Article  PubMed  CAS  Google Scholar 

  • Bos, J.D., and M.M.H.M. Meinardi. 2000. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Experimental Dermatology 9: 165–169.

    Article  PubMed  CAS  Google Scholar 

  • Bosman, I.J., S.R. Avegaart, A.L. Lawant, K. Ensing, and R.A. De Zeeuw. 1998. Evaluation of a novel diffusion cell for in vitro transdermal permeation: Effects of injection height, volume and temperature. Journal of Pharmaceutical and Biomedical Analysis 17: 493–499.

    Article  PubMed  CAS  Google Scholar 

  • Carafa, M., C. Marianecci, G. Lucania, E. Marchei, and E. Santucci. 2004. New vesicular ampicillin-loaded delivery systems for topical application: Characterization, in vitro permeation experiments and antimicrobial activity. Journal of Controlled Release 95: 67–74.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, Y., N. Man, T. Xu, R. Fu, X. Wang, X. Wang, and L. Wen. 2007. Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. Journal of Pharmaceutical Sciences 96: 595–602.

    Article  PubMed  CAS  Google Scholar 

  • Cho, H.K., K.S. Cho, J.H. Cho, S.W. Choi, J.H. Kim, and I.W. Cheong. 2008. Synthesis and characterization of PEO–PCL–PEO triblock copolymers: Effects of the PCL chain length on the physical property of W1/O/W2 multipleemulsions. Colloids and Surfaces B 65: 61–68.

    Article  CAS  Google Scholar 

  • Cho, H.K., S. Lone, D.D. Kim, J.H. Choi, S.W. Choi, J.H. Cho, J.H. Kim, and I.W. Cheong. 2009. Synthesis and characterization of fluorescein isothiocyanate (FITC)-labeled PEO–PCL–PEO triblock copolymers for topical delivery. Polymer 50: 2357–2364.

    Article  CAS  Google Scholar 

  • Cho, H.K., I.W. Cheong, J.M. Lee, and J.H. Kim. 2010. Polymeric nanoparticles, micelles and polymersomes from amphiphilic block copolymer. Korean Journal of Chemical Engineering 27(3): 731–740.

    Article  CAS  Google Scholar 

  • Coderch, L., M. Oliva, M. Pons, A.D.L. Maza, A.M. Manich, and J.L. Parra. 1996. Percutaneous penetration of liposomes using the tape stripping technique. International Journal of Pharmaceutics 139: 197–203.

    Article  CAS  Google Scholar 

  • Conti, B., I. Genta, P. Giunchedi, and T. Modena. 1995. Testing of “In Vitro” dissolution behavior of microparticulate drug delivery systems. Drug Development and Industrial Pharmacy 21: 1223–1233.

    Article  CAS  Google Scholar 

  • Costache, A.D., L. Sheihet, K. Zaveri, D.D. Knight, and J. Kohn. 2009. Polymer–drug Interactions in tyrosine-derived triblock copolymer nanospheres: A computational modeling approach. Molecular Pharmacology 6(5): 1620–1627.

    Article  CAS  Google Scholar 

  • Date, A.A., B. Naik, and M.S. Nagarsenker. 2006. Novel drug delivery systems: Potential in improving topical delivery of antiacne agents. Skin Pharmacology and Physiology 19: 2–16.

    Article  PubMed  CAS  Google Scholar 

  • Desai, M.P., V. Labhasetwar, G.L. Amidon, and R.J. Levy. 1996. Gastrointestinal uptake of biodegradable microparticles: Effect of particle size. Pharmaceutical Research 13: 1838–1845.

    Article  PubMed  CAS  Google Scholar 

  • Discher Dennis, E., and A. Eisenberg. 2002. Polymer vesicles. Science 297: 967–973.

    Article  PubMed  CAS  Google Scholar 

  • Djordjevic, J., B. Michniak, and E. Uhrich Kathryn. 2003. Amphiphilic star-like macromolecules as novel carriers for topical delivery of nonsteroidal anti-inflammatory drugs. American Association of Pharmaceutical Scientists 5: E26.

    Google Scholar 

  • Dorati, R., I. Genta, C. Tomasi, T. Modena, C. Colonna, F. Pavanetto, P. Perugini, and B. Conti. 2008. Polyethylenglycol-co-poly-d,l-lactide copolymer based microspheres: Preparation, characterization and delivery of a model protein. Journal of Microencapsulation 25: 330–338.

    Article  PubMed  CAS  Google Scholar 

  • Drumond, W.S., C.G. Mothe, and S.H. Wang. 2008. Biodegradable nanosize particles of poly(l,l-lactide)-b-poly(ethylene glycol)-b-poly(l,l-lactide). Polymer Engineering & Science 48: 1939–1946.

    Article  CAS  Google Scholar 

  • El-Kattan, A., C.S. Asbill, and S. Haidar. 2000. Transdermal testing: Practical aspects and methods. Pharmaceutical Science & Technology Today 3: 426–430.

    Article  CAS  Google Scholar 

  • Elvira, C., A. Gallardo, J. San Roman, and A. Cifuentes. 2005. Covalent polymer–drug conjugates. Molecules 10: 114–125.

    Article  PubMed  CAS  Google Scholar 

  • Fan, Q., K.K. Sirkar, and B. Michniak. 2008. Iontophoretic transdermal drug delivery system using a conducting polymeric membrane. Journal of Membrane Science 321: 240–249.

    Article  CAS  Google Scholar 

  • Fang, J.-Y., L.-R. Hsu, Y.-B. Huang, and Y.-H. Tsai. 1999. Evaluation of transdermal iontophoresis of enoxacin from polymer formulations: In vitro skin permeation and in vivo microdialysis using Wistar rat as an animal model. International Journal of Pharmaceutics 180: 137–149.

    Article  PubMed  CAS  Google Scholar 

  • Frauke, P.K., A. Breitenbach, R. Zange-Volland, and T. Kissel. 2001. Brush-like branched biodegradable polyesters. Part III. Protein release from microspheres of poly(vinyl alcohol)-graft-poly(d,l-lactic-co-glycolic acid). Journal of Controlled Release 73: 7–20.

    Article  Google Scholar 

  • Friberg, S.E. 1990. Micelles, microemulsions, liquid crystals, and the structure of stratum corneum lipids. Journal of the Society of Cosmetic Chemists 41: 155–171.

    CAS  Google Scholar 

  • Furuishi, T., S. Oda, H. Saito, T. Fukami, T. Suzuki, and K. Tomono. 2007. Effect of permeation enhancers on the in vitro percutaneous absorption of pentazocine. Biological and Pharmaceutical Bulletin 30: 1350–1353.

    Article  PubMed  CAS  Google Scholar 

  • Gaucher, G., M.-H. Dufresne, V.P. Sant, N. Kang, D. Maysinger, and J.-C. Leroux. 2005. Block copolymer micelles: Preparation, characterization and application in drug delivery. Journal of Controlled Release 109: 169–188.

    Article  PubMed  CAS  Google Scholar 

  • Gautier, E., P. Fuertes, P. Cassagnau, J.-P. Pascault, and E. Fleury. 2009. Synthesis and rheology of biodegradable poly(glycolic acid) prepared by melt ring-opening polymerization of glycolide. Journal of Polymer Science Part A 47: 1440–1449.

    Article  CAS  Google Scholar 

  • Ge, H., Y. Hu, X. Jiang, D. Cheng, Y. Yuan, H. Bi, and C. Yang. 2002. Preparation, characterization, and drug release behaviors of drug nimodipine-loaded poly(e-caprolactone)-poly(ethylene oxide)-poly(e-caprolactone) amphiphilic triblock copolymer micelles. Journal of Pharmaceutical Sciences 91: 1463–1473.

    Article  PubMed  CAS  Google Scholar 

  • Gelperina, S., K. Kisich, D. Iseman Michael, and L. Heifets. 2005. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. American Journal of Respiratory and Critical Care Medicine 172: 1487–1490.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gref, R., J. Rodrigues, and P. Couvreur. 2002. Polysaccharides grafted with polyesters: Novel amphiphilic copolymers for biomedical applications. Macromolecules 35: 9861–9867.

    Article  CAS  Google Scholar 

  • Harrington, K.J., C.R. Lewanski, and J.S. Stewart. 2000. Liposomes as vehicles for targeted therapy of cancer. Part 2: Clinical development. Clinical oncology (Royal College of Radiologists) 12: 16–24.

    CAS  Google Scholar 

  • Haw, J.-R., and C.-H. Kim. 1997. Stabilization and release behavior of W1/O/W2-type multiple emulsions using various block copolymer emulsifier and stabilizer. Kongop Hwahak 8: 560–567.

    CAS  Google Scholar 

  • Hikima, T., S. Ohsumi, K. Shirouzu, and K. Tojo. 2009. Mechanisms of synergistic skin penetration by sonophoresis and iontophoresis. Biological and Pharmaceutical Bulletin 32: 905–909.

    Article  PubMed  CAS  Google Scholar 

  • Honeywell-Nguyen, P.L., and J.A. Bouwstra. 2005. Vesicles as a tool for transdermal and dermal delivery. Drug Discovery Today: Technologies 2: 67–74.

    Article  CAS  Google Scholar 

  • Hong, S.W., K.H. Kim, J. Huh, C.-H. Ahn, and W.H. Jo. 2005. Drug release behavior of poly(e-caprolactone)-b-poly(acrylic acid) shell crosslinked micelles below the critical micelle concentration. Macromolecular Research 13: 397–402.

    Article  CAS  Google Scholar 

  • Kadam, Y., U. Yerramilli, and A. Bahadur. 2009. Solubilization of poorly water-soluble drug carbamezapine in Pluronic micelles: Effect of molecular characteristics, temperature and added salt on the solubilizing capacity. Colloids and Surfaces B 72: 141–147.

    Article  CAS  Google Scholar 

  • Kalia, Y.N., I. Alberti, N. Sekkat, C. Curdy, A. Naik, and R.H. Guy. 2000. Normalization of stratum corneum barrier function and transepidermal water loss in vivo. Pharmaceutical Research 17: 1148–1150.

    Article  PubMed  CAS  Google Scholar 

  • Kandavilli, S., V. Nair, and R. Panchagnula. 2002. Polymers in transdermal drug delivery systems. Pharmarceutical Technology North America 26: 62–80.

    CAS  Google Scholar 

  • Kim, Y., P. Dalhaimer, D.A. Christian, and D.E. Discher. 2005. Polymeric worm micelles as nano-carriers for drug delivery. Nanotechnology 16: 484–491.

    Article  CAS  Google Scholar 

  • Kirino, Y., T. Yokoyama, T. Hirono, T. Nakajima, and S. Nakashima. 2009. Effect of density-driven flow on the through-diffusion experiment. Journal of Contaminant Hydrology 106: 166–172.

    Article  PubMed  CAS  Google Scholar 

  • Lademann, J., U. Jacobi, C. Surber, H.J. Weigmann, and J.W. Fluhr. 2009. The tape stripping procedure—Evaluation of some critical parameters. European Journal of Pharmaceutics and Biopharmaceutics 72: 317–323.

    Article  PubMed  CAS  Google Scholar 

  • Lanke, S.S.S., C.S. Kolli, J.G. Strom, and A.K. Banga. 2009. Enhanced transdermal delivery of low molecular weight heparin by barrier perturbation. International Journal of Pharmaceutics 365: 26–33.

    Article  PubMed  CAS  Google Scholar 

  • Larras, V., N. Bru, P. Breton, and G. Riess. 2000. Synthesis and micellization of amphiphilic poly(ethylene oxide)-block-poly(methylidene malonate 2.1.2.) diblock copolymers. Macromolecular Rapid Communications 21: 1089–1092.

    Article  CAS  Google Scholar 

  • Lauer, A.C. 1999. Percutaneous drug delivery to the hair follicle. Drugs and the Pharmaceutical Science 97: 427–449.

    CAS  Google Scholar 

  • Liggins, R.T., and H.M. Burt. 2002. Polyether–polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. Advanced Drug Delivery Reviews 54: 191–202.

    Article  PubMed  CAS  Google Scholar 

  • Liu, M., K. Kono, and J.M.J. Frechet. 2000. Water-soluble dendritic unimolecular micelles: Their potential as drug delivery agents. Journal of Controlled Release 65: 121–131.

    Article  PubMed  CAS  Google Scholar 

  • Maffei, P., S.L. Borgia, A. Sforzini, A. Yasin, C. Ronchi, and G.C. Ceschel. 2004. Design and in vitro-in vivo evaluation of a bi-layered tablet containing benzocaine for local buccal administration. Journal of Drug Delivery Science and Technology 14: 363–372.

    CAS  Google Scholar 

  • Marttin, E., M.T. Neelissen-Subnel, F.H. De Haan, and H.E. Bodde. 1996. A critical comparison of methods to quantify stratum corneum removed by tape stripping. Skin Pharmacology 9: 69–77.

    Article  PubMed  CAS  Google Scholar 

  • Mitriaikina, S., and C.C. Mueller-Goymann. 2007. Synergetic effects of isopropyl alcohol (IPA) and isopropyl myristate (IPM) on the permeation of betamethasone-17-valerate from semisolid pharmacopoeia bases. Journal of Drug Delivery Science and Technology 17: 339–346.

    CAS  Google Scholar 

  • Narrainen, A.P., S. Pascual, and D.M. Haddleton. 2002. Amphiphilic diblock, triblock, and star block copolymers by living radical polymerization: Synthesis and aggregation behavior. Journal of Polymer Science Part A 40: 439–450.

    Article  CAS  Google Scholar 

  • Nii, T., and F. Ishii. 2005. Encapsulation efficiency of water-soluble and insoluble drugs in liposomes prepared by the microencapsulation vesicle method. International Journal of Pharmaceutics 298: 198–205.

    Article  PubMed  CAS  Google Scholar 

  • Olvera-Martinez Blanca, I., J. Cazares-Delgadillo, B. Calderilla-Fajardo Silvia, R. Villalobos-Garcia, A. Ganem-Quintanar, and D. Quintanar-Guerrero. 2005. Preparation of polymeric nanocapsules containing octyl methoxycinnamate by the emulsification-diffusion technique: Penetration across the stratum corneum. Journal of Pharmaceutical Sciences 94: 1552–1559.

    Article  PubMed  CAS  Google Scholar 

  • Panyam, J., and V. Labhasetwar. 2003. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews 55: 329–347.

    Article  PubMed  CAS  Google Scholar 

  • Pongjanyakul, T.S., A. Prakongpan, and A. Priprem. 2003. Acrylic matrix type nicotine transdermal patches: In vitro evaluations and batch-to-batch uniformity. Drug Development and Industrial Pharmacy 29: 843–853.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, V., N. Kumar, and P.R. Mishra. 2007. Amphiphilic gels as a potential carrier for topical drug delivery. Drug Delivery 14: 75–85.

    Article  PubMed  CAS  Google Scholar 

  • Pygall, S.R., J. Whetstone, P. Timmins, and C.D. Melia. 2007. Pharmaceutical applications of confocal laser scanning microscopy: The physical characterisation of pharmaceutical systems. Advanced Drug Delivery Reviews 59: 1434–1452.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, L.Y., and Y.H. Bae. 2006. Polymer architecture and drug delivery. Pharmaceutical Research 23: 1–30.

    Article  PubMed  CAS  Google Scholar 

  • Raffin, R.P., L.M. Colome, S.S. Guterres, and A.R. Pohlmann. 2007. Enteric controlled-release pantoprazole-loaded microparticles prepared by using Eudragit S100 and poly(ε-caprolactone) blend. Pharmaceutical Development and Technology 12: 463–471.

    Article  PubMed  CAS  Google Scholar 

  • Raghavachari, N., and W.E. Fahl. 2002. Targeted gene delivery to skin cells in vivo: A comparative study of liposomes and polymers as delivery vehicles. Journal of Pharmaceutical Sciences 91: 615–622.

    Article  PubMed  CAS  Google Scholar 

  • Rastogi, R., S. Anand, and V. Koul. 2009. Flexible polymerosomes—An alternative vehicle for topical delivery. Colloids and Surfaces B 72: 161–166.

    Article  CAS  Google Scholar 

  • Reimus, P.W., T.J. Callahan, S.D. Ware, M.J. Haga, and D.A. Counce. 2007. Matrix diffusion coefficients in volcanic rocks at the Nevada test site: Influence of matrix porosity, matrix permeability, and fracture coating minerals. Journal of Contaminant Hydrology 93: 85–95.

    Article  PubMed  CAS  Google Scholar 

  • Santos, P., A.C. Watkinson, J. Hadgraft, and M.E. Lane. 2008. Application of microemulsions in dermal and transdermal drug delivery. Skin Pharmacology and Physiology 21: 246–259.

    Article  PubMed  CAS  Google Scholar 

  • Shah, V.P., M. Siewert, J. Dressman, H. Moeller, C.K. Brown, J.-M. Aiache, C.K. Brown, J. Dressman, R. Djerki, K. Gjellan, V. Gray, J. Kraemer, H. Kristensen, C. Leuner, P. Loos, H. Moeller, B. Mueller, S. Qureshi, J. Robinson, V.P. Shah, and M. Siewert. 2002. Dissolution/in vitro release testing of special dosage forms. Dissolution Technologies 9(6–8): 10–11.

    Google Scholar 

  • Shim, J., H. Seok Kang, W.-S. Park, S.-H. Han, J. Kim, and I.-S. Chang. 2004. Transdermal delivery of mixnoxidil with block copolymer nanoparticles. Journal of Controlled Release 97: 477–484.

    Article  PubMed  CAS  Google Scholar 

  • Signori, F., F. Chiellini, and R. Solaro. 2005. New self-assembling biocompatible–biodegradable amphiphilic block copolymers. Polymer 46: 9642–9652.

    Article  CAS  Google Scholar 

  • Simon, L.D., L. Ruiz-Cardona, E.M. Topp, and V.J. Stella. 1994. Effect of pH on theophylline release from partially esterified alginic acid matrixes. Drug Development and Industrial Pharmacy 20: 2341–2351.

    Article  CAS  Google Scholar 

  • Sjoeqvist, R., C. Graffner, I. Ekman, W. Sinclair, and J.P. Woods. 1993. In vivo validation of the release rate and palatability of remoxipride-modified release suspension. Pharmaceutical Research 10: 1020–1026.

    Article  CAS  Google Scholar 

  • Stracke, F., B. Weiss, C.-M. Lehr, K. Koenig, U.F. Schaefer, and M. Schneider. 2006. Multiphoton microscopy for the investigation of dermal penetration of nanoparticle-borne drugs. Journal of Investigative Dermatology 126: 2224–2233.

    Article  PubMed  CAS  Google Scholar 

  • Suhag, G.S., A. Bhatnagar, and H. Singh. 2008. Poly(hydroxyethyl methacrylate)-based co-polymeric hydrogels for transdermal delivery of salbutamol sulphate. Journal of Biomaterials Science, Polymer Edition 19: 1189–1200.

    Article  CAS  Google Scholar 

  • Sun, B., and D.T. Chiu. 2005. Determination of the encapsulation efficiency of individual vesicles using single-vesicle photolysis and confocal single-molecule detection. Analytical Chemistry 77: 2770–2776.

    Article  PubMed  CAS  Google Scholar 

  • Tallury, P., S. Kar, S. Bamrungsap, Y.-F. Huang, W. Tan, and S. Santra. 2009. Ultra-small water-dispersible fluorescent chitosan nanoparticles: Synthesis, characterization and specific targeting. Chemical Communications 2347–2349.

  • Teichmann, A., S. Heuschkel, U. Jacobi, G. Presse, R.H.H. Neubert, W. Sterry, and J. Lademann. 2007. Comparison of stratum corneum penetration and localization of a lipophilic model drug applied in an o/w microemulsion and an amphiphilic cream. European Journal of Pharmaceutics and Biopharmaceutics 67: 699–706.

    Article  PubMed  CAS  Google Scholar 

  • Thevenin, M.A., J.L. Grossiord, and M.C. Poelman. 1996. Sucrose esters/cosurfactant microemulsion systems for transdermal delivery: Assessment of di-continuous structures. International Journal of Pharmaceutics 137: 177–186.

    Article  CAS  Google Scholar 

  • Tolia, G.T., and H.H. Choi. 2008. The role of dendrimers in topical drug delivery. Pharmaceutical Technology 32:88, 90, 92, 94, 96, 98.

  • Tsai, C.-J., L.-R. Hsu, J.-Y. Fang, and H–.H. Lin. 1999. Chitosan hydrogel as a base for transdermal delivery of berberine and its evaluation in rat skin. Biological and Pharmaceutical Bulletin 22: 397–401.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, J.C., L.C. Shen, H.M. Sheu, and C.C. Lu. 2003. Tape stripping and sodium dodecyl sulfate treatment increase the molecular weight cutoff of polyethylene glycol penetration across murine skin. Archives of Dermatological Research 295: 169–174.

    Article  PubMed  CAS  Google Scholar 

  • Velluto, D., D. Demurtas, and J.A. Hubbell. 2008. PEG-b-PPS diblock copolymer aggregates for hydrophobic drug solubilization and release: Cyclosporin A as an example. Molecular Pharmaceutics 5: 632–642.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C., G. Li, and R. Guo. 2005. Multiple morphologies from amphiphilic graft copolymers based on chitooligosaccharides as backbones and polycaprolactones as branches. Chemical Communications 3591–3593.

  • Wang, Y.C., L.Y. Tang, T.M. Sun, C.H. Li, M.H. Xiong, and J. Wang. 2008. Self-assembled micelles of biodegradable triblock copolymers based on poly(ethyl ethylene phosphate) and poly(ε-caprolactone) as drug carriers. Biomacromolecules 9(1): 388–395.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, Y., H. Suzuki, and T. Ueda. 2006. HLB number of VITAMINS C, E, coenzyme Q10 derivatives and their transportation efficiency into skin. Vibrational Spectroscopy 42: 195–200.

    Article  CAS  Google Scholar 

  • Weigmann, H.-J., J. Lademann, R. Von Pelchrzim, W. Sterry, T. Hagemeister, R. Molzahn, M. Schaefer, M. Lindscheid, H. Schaefer, and V.P. Shah. 1999. Bioavailability of clobetasol propionate. Quantification of drug concentrations in the stratum corneum by dermatopharmacokinetics using tape stripping. Skin Pharmacology and Physiology 12: 46–53.

    Article  CAS  Google Scholar 

  • Wertz, P.W. 2000. Lipids and barrier function of the skin. Acta Dermato-Venereologica Supplementum 208: 7–11.

    Google Scholar 

  • Wu, H., C. Ramachandran, N.D. Weiner, and B.J. Roessler. 2001. Topical transport of hydrophilic compounds using water-in-oil nanoemulsions. International Journal of Pharmaceutics 220: 63–75.

    Article  PubMed  CAS  Google Scholar 

  • Wu, X., B. Biatry, C. Cazeneuve, and R.H. Guy. 2009a. Drug delivery to the skin from sub-micron polymeric particle formulations: Influence of particle size and polymer hydrophobicity. Pharmaceutical Research 26: 1995–2001.

    Article  PubMed  CAS  Google Scholar 

  • Wu, X., P. Griffin, G.J. Price, and R.H. Guy. 2009b. Preparation and in vitro evaluation of topical formulations based on polystyrene-poly-2-hydroxyl methacrylate nanoparticles. Molecular Pharmaceutics 6(5): 1449–1456.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, X.Y., K.C. Tam, and L.H. Gan. 2005. Release kinetics of hydrophobic and hydrophilic model drugs from pluronic F127/poly(lactic acid) nanoparticles. Journal of Controlled Release 103: 73–82.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z., G. Sahay, S. Sriadibhatla, and A.V. Kabanov. 2008. Amphiphilic block copolymers enhance cellular uptake and nuclear entry of polyplex-delivered DNA. Bioconjugate Chemistry 19: 1987–1994.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yeo, Y., and K. Park. 2004. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Archives of Pharmacal Research 27: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Yoo, Y., D.-C. Kim, and T.-Y. Kim. 1999. Preparation and characterization of enalapril maleate-loaded nanoparticles using amphiphilic diblock copolymers. Journal of Applied Polymer Science 74: 2856–2867.

    CAS  Google Scholar 

  • Yu, C.-Y., L.-H. Jia, B.-C. Yin, X.-Z. Zhang, S.-X. Cheng, and R.-X. Zhuo. 2008. Fabrication of nanospheres and vesicles as drug carriers by self-assembly of alginate. The Journal of Physical Chemistry C 112: 16774–16778.

    Article  CAS  Google Scholar 

  • Zha, L.-S., L. Li, and H.-P. Zhao. 2006. Preparation and characterization of nimodipine-loaded methoxy poly(ethylene glycol)-poly(lactic acid) diblock copolymer nanoparticles. Journal of Dong Hua University 23: 107–114.

    CAS  Google Scholar 

  • Zhang, X.-M., A.B. Patel, R.A. De Graaf, and K.L. Behar. 2004. Determination of liposomal encapsulation efficiency using proton NMR spectroscopy. Chemistry and Physics of Lipids 127: 113–120.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Kyungpook National University Research Fund, 2011.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Woo Cheong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, H.K., Cho, J.H., Jeong, S.H. et al. Polymeric vehicles for topical delivery and related analytical methods. Arch. Pharm. Res. 37, 423–434 (2014). https://doi.org/10.1007/s12272-014-0342-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-014-0342-4

Keywords

Navigation