Skip to main content
Log in

Potent α-glucosidase and protein tyrosine phosphatase 1B inhibitors from Artemisia capillaris

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

As a part of our ongoing effort to identify anti-diabetic constituents from natural sources, we examined the inhibitory activity of the methanol extracts of 12 species of the genus Artemisia, against α-glucosidase and protein tyrosine phosphatase 1B (PTP1B). The methanol extracts of different species exhibited promising α-glucosidase and PTP1B inhibitory activities. Since the methanol extract of Artemisia capillaris exhibited the highest α-glucosidase inhibitory activity together with significant PTP1B inhibitory activity, it was selected for further investigation. Repeated column chromatography based on bioactivity guided fractionation yielded 10 coumarins (esculetin, esculin, scopolin, isoscopolin, daphnetin, umbelliferone, 7-methoxy coumarin, scoparone, scopoletin, 6-methoxy artemicapin C), 8 flavonoids (hyperoside, quercetin, isorhamnetin, cirsilineol, arcapillin, isorhamnetin 3-robinobioside, linarin, isorhamnetin 3-glucoiside), 6 phenolic compounds (1,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid methyl ester, 4,5-dicaffeoylquinic acid, 3-caffeoylquinic acid), and one chromone (capillarisin). Among these compounds, esculetin, scopoletin, quercetin, hyperoside, isorhamnetin, 3,5-dicaffeoylquinic acid methyl ester, 3,4-dicaffeoylquinic acid, and 1,5-dicaffeoylquinic acid exhibited potent α-glucosidase inhibitory activity when compared to the positive control acarbose. In addition, esculetin and 6-methoxy artemicapin C displayed PTP1B inhibitory activity. Interestingly, all isolated dicaffeoylquinic acids showed significant PTP1B inhibitory activity. Therefore, the results of the present study clearly demonstrate the potential of the A. capillaris extract to inhibit α-glucosidase and PTP1B. These inhibitory properties can be largely attributed to a combination of different chemical structures, including coumarins, flavonoids, and dicaffeoylquinic acids, which could be further explored to develop therapeutic or preventive agents for the treatment of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Korea Food and Drug Administration. 2002. The Korean herbal pharmacopoeia, 307, 383, 461, 505. Seoul: Korea Food and Drug Administration.

  • World Health Organization (WHO). 2008. 10 Facts about diabetes. Available at http://www.who.int/features/factfiles/diabetes/10_en.html. Accessed 15 June 2008.

  • Centers for Disease Control and Prevention, National Center for Health Statistics. 2010. Division of Health Interview Statistics, data from the National Health Interview Survey. U.S. Bureau of the Census, census of the population and population estimates. Available from http://www.cdc.gov/diabetes/statistics/. Accessed Oct 2010.

  • Adolfo, A.C., and H. Michael. 2005. Mexican plants with hypoglycaemic effect used in the treatment of diabetes. Journal of Ethnopharmacology 99: 325–348.

    Article  Google Scholar 

  • Ashraf, M., M.Q. Hayat, S. Jabeen, N. Shaheen, M.A. Khan, G. Yasmin, and L. Artemisia. 2010. Species recognized by the local community of northern areas of Pakistan as folk therapeutic plants. Journal of Medicinal Plants Research 4: 112–119.

    Google Scholar 

  • Ayodhya, S., S. Kusum, and S. Anjali. 2010. Hypoglycaemic activity of different extracts of various herbal plants. International Journal of Research in Ayurveda and Pharmacy 1: 212–224.

    Google Scholar 

  • Chaudhry, J., N.N. Ghosha, K. Roya, and R. Chandra. 2007. Antihyperglycemic effect of a new thiazolidinedione analogue and its role in ameliorating oxidative stress in alloxan-induced diabetic rats. Life Sciences 80: 1135–1142.

    Article  PubMed  CAS  Google Scholar 

  • Cui, C.B., S.K. Jeong, Y.S. Lee, S.O. Lee, I.J. Kang, and S.S. Lim. 2009. Inhibitory activity of caffeoylquinic acids from the aerial parts of Artemisia princeps on rat lens aldose reductase and on the formation of advanced glycation end products. Journal of the Korean Society for Applied Biological Chemistry 52: 655–662.

    Article  CAS  Google Scholar 

  • Cui, L., M.K. Na, H. Oh, E.Y. Bae, D.G. Jeong, S.E. Ryu, S. Kim, B.Y. Kim, W.K. Oha, and J.S. Ahn. 2006. Protein tyrosine phosphatase 1B inhibitors from Morus root bark. Bioorganic & Medicinal Chemistry Letters 16: 1426–1429.

    Article  CAS  Google Scholar 

  • Fujisawa, T., H. Ikegami, K. Inoue, Y. Kawabata, and T. Ogihara. 2005. Effect of two α-glucosidase inhibitors, voglibose and acarbose, on postprandial hyperglycemia correlates with subjective abdominal symptoms. Metabolism: Clinical and Experimental 54: 387–390.

    Article  CAS  Google Scholar 

  • Gao, H., Y.N. Huang, B. Gao, P.Y. Xu, C. Inagaki, and J. Kawabata. 2008. α-Glucosidase inhibitory effect by the flower buds of Tussilago farfara L. Food Chemistry 106: 1195–1201.

    Article  CAS  Google Scholar 

  • Herz, W., S.V. Bhat, and P.S. Santhanam. 1970. Coumarins of Artemisia dracunculoides and 3′,6-dimethoxy-4′,5,7-trihydroxyflavone in A. arctica. Phytochemistry 9: 891–894.

    Article  CAS  Google Scholar 

  • Johnson, T.O., J. Ermolieff, and M.R. Jirousek. 2002. Protein tyrosine phosphatase 1B inhibitors for diabetes. Nature Reviews Drug Discovery 1: 696–709.

    Article  PubMed  CAS  Google Scholar 

  • Jung, H.A., M.N. Islam, Y.K. Kwon, S.E. Jin, Y.K. Son, J.J. Park, H.S. Sohn, and J.S. Choi. 2011. Extraction and identification of three major aldose reductase inhibitors from Artemisia montana. Food and Chemical Toxicology 49: 376–384.

    Article  PubMed  CAS  Google Scholar 

  • Jung, H.A., J.J. Park, M.N. Islam, S.E. Jin, B.S. Min, J.H. Lee, H.S. Sohn, and J.S. Choi. 2012. Inhibitory activity of coumarins from Artemisia capillaris against advanced glycation endproduct formation. Archives of Pharmacal Research 35: 1021–1035.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.O., Y.S. Kim, J.H. Lee, M.N. Kim, S.H. Rhee, S.H. Moon, and K.Y. Park. 1992. Antimutagenic effect of the major volatile compounds identified from mugwort (Artemisia asiatica nakai) leaves. Journal of the Korean Society of Food Science and Nutrition 21: 308–313.

    CAS  Google Scholar 

  • Kim, J.S., C.S. Kwon, and K.H. Son. 2000. Inhibition of alpha glucosidase and amylase by luteolin, a flavonoid. Bioscience, Biotechnology, and Biochemistry 64: 2458–2461.

    Article  PubMed  CAS  Google Scholar 

  • Kim, T.J. 1996. Korean resources plants, 265. Seoul: Seoul National University Press.

    Google Scholar 

  • Kimura, Y., H. Okuda, T. Okuda, T. Hatano, I. Agata, and S. Arichi. 1985. Studies on the activities of tannins and related compounds from medicinal plants and drugs. VII. Effects of extracts of leaves of Artemisia species, and caffeic acid and chlorogenic acid on lipid metabolic injury in rats fed peroxidized oil. Chemical & Pharmaceutical Bulletin 33: 2028–2034.

    Article  CAS  Google Scholar 

  • Komiya, T., Y. Naruse, and H. Oshio. 1976. Studies on “Inchinko”. II. Studies on the compounds related to capillarisin and flavonoids. Yakugaku Zasshi 96: 855–862.

    PubMed  CAS  Google Scholar 

  • Kordali, S., R. Kotan, A. Mavi, A. Cakir, A. Ala, and A. Vildirim. 2005. Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, Artemisia santonicum, and Artemisia spicigera essential oils. Journal of Agriculture and Food Chemistry 53: 9452–9458.

    Article  CAS  Google Scholar 

  • Kumar, S., S. Narwal, V. Kumar, and O. Prakash. 2011. α-Glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacognosy Reviews 5: 19–29.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S., K.S. Kim, S.H. Shim, Y.M. Park, and B.K. Kim. 2003. Constituents from the non-polar fraction of Artemisia apiacea. Archives of Pharmacal Research 26: 902–905.

    Article  PubMed  CAS  Google Scholar 

  • Li, T., X.D. Zhang, Y.W. Song, and J.W. Liu. 2005. A microplate-based screening method for α-glucosidase inhibitors. Chinese Journal of Clinical Pharmacology and Therapeutics 10: 1128–1134.

    Google Scholar 

  • Logendra, S., D. Ribnicky, H. Yang, A. Poulev, J. Ma, E. Kennelly, and I. Raskin. 2006. Bioassay-guided isolation of aldose reductase inhibitors from Artemisia dracunculus. Phytochemistry 67: 1539–1546.

    Article  PubMed  CAS  Google Scholar 

  • Mehrdad, I., A.E. Seyed, and M.S. Meysam. 2007. Detection of sesquiterpene lactones in ten Artemisia species population of Khorasan Provinces. Iranian Journal of Basic Medical Sciences 10: 183–188.

    Google Scholar 

  • Okada, Y., N. Miyauchi, K. Suzuki, T. Kobayashi, C. Tsutsui, K. Mayuzumi, S. Nishibe, and T. Okuyama. 1995. Search for naturally occurring substances to prevent the complications of diabetes. II. Inhibitory effect of coumarin and flavonoid derivatives on bovine lens aldose reductase and rabbit platelet aggregation. Chemical & Pharmaceutical Bulletin 43: 1385–1387.

    Article  CAS  Google Scholar 

  • Panunti, B., A.A. Jawa, and V.A. Fonseca. 2004. Mechanisms and therapeutic targets in type 2 diabetes mellitus. Drug Discover Today: Disease Mechanisms 1: 151–157.

    Article  CAS  Google Scholar 

  • Proksch, P. 1992. Artemisia. In Hagers Handbuch der Pharmazeutischen Praxis, ed. R. Hansel, K. Keller, H. Rimpler, G. Schneider, and Hrsg, 357–377. Berlin: Springer-Verlag.

    Google Scholar 

  • Ribnickya, D.M., A. Pouleva, M. Watfordb, W.T. Cefaluc, and I. Raskina. 2006. Antihyperglycemic activity of Tarralin™, an ethanolic extract of Artemisia dracunculus L. Phytomedicine 13: 550–557.

    Article  Google Scholar 

  • Saltiel, A.R., and J.E. Pessin. 2002. Insulin signaling pathways in time and space. Trends in Cell Biology 12: 65–71.

    Article  PubMed  CAS  Google Scholar 

  • Singh, K., P.K. Rai, D. Jaiswal, and G. Watal. 2008. Evidence based critical evaluation of glycemic potential of Cynodon dactylon. Evidence-Based Complementary and Alternative Medicine 5: 415–420.

    Article  PubMed  Google Scholar 

  • Standl, E., and O. Schnell. 2012. Alpha-glucosidase inhibitors 2012—cardiovascular considerations and trial evaluation. Diabetes and Vascular Disease Research 9: 163–169.

    Article  PubMed  Google Scholar 

  • Tadera, K., Y. Minami, K. Takamatsu, and T. Matsouka. 2006. Inhibition of α-glucosidase and α-amylase by flavonoids. Journal of Nutritional Science and Vitaminology 52: 149–153.

    Article  PubMed  CAS  Google Scholar 

  • Tan, R.X., W.F. Zheng, and H.Q. Tang. 1998. Biologically active substances from the genus Artemisia. Planta Medica 64: 295–302.

    Article  PubMed  CAS  Google Scholar 

  • Tonks, N.K., and B.G. Neal. 2001. Combinatorial control of the specificity of protein tyrosine phosphatases. Current Opinion in Cell Biology 13: 182–195.

    Article  PubMed  CAS  Google Scholar 

  • Vats, R.K., V. Kumar, A. Kothari, and A. Mital. 2005. Emerging targets for diabetes. Current Science 88: 241–249.

    CAS  Google Scholar 

  • Wu, T.S., Z.J. Tsang, P.L. Wu, F.W. Lin, C.Y. Li, C.M. Teng, and K.H. Lee. 2001. New constituents and antiplatelet aggregation and anti-HIV principles of Artemisia capillaris. Bioorganic & Medicinal Chemistry 9: 77–83.

    Article  CAS  Google Scholar 

  • Wu, X., V.E. Hardy, and J.I. Joseph. 2003. Protein-tyrosine phosphatase activity in human adipocytes is strongly correlated with insulin-stimulated glucose uptake and is a target of insulin-induced oxidative inhibition. Metabolism 52: 705–712.

    Article  PubMed  CAS  Google Scholar 

  • Yook, C.S. 1989. Coloured medicinal plants of Korea, 522. Seoul: Academy Publishing Co.

    Google Scholar 

  • Zhao, Q.C., H. Kiyohara, and H. Yamada. 1994. Anti-complementary neutral polysaccharides from leaves of Artemisia princeps. Phytochemistry 35: 73–77.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education, Science and Technology (2011-0012539), and by a Grant from the Food & Drug Administration, South Korea (2010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyun Ah Jung or Jae Sue Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nurul Islam, M., Jung, H.A., Sohn, H.S. et al. Potent α-glucosidase and protein tyrosine phosphatase 1B inhibitors from Artemisia capillaris . Arch. Pharm. Res. 36, 542–552 (2013). https://doi.org/10.1007/s12272-013-0069-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0069-7

Keywords

Navigation