Skip to main content
Log in

α-Glucosidase inhibitor compounds from Aspergillus terreus RCC1 and their antioxidant activity

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

As part of the search for naturally derived α-glucosidase inhibitors, the chemical components isolated from Aspergillus terreus RCC1 were evaluated. Three butenolides compounds were isolated and their structures were identified as isoaspulvinone E (1), aspulvinone E (2), and butyrolactone I (3). Compounds 1 and 2 exhibited high activity on α-glucosidase inhibitory with IC50 values of 8.92 and 2.70 μM, respectively, lower than quercetin (IC50 = 10.92 μM). However, these compounds exhibited moderate antioxidant activity with IC50 values of 167.82 and 114.86 μM, respectively. To the best of our knowledge, this is the first report of both the α-glucosidase inhibitory and antioxidant activities of aspulvinone compounds. In particular, both the aspulvinone compounds could be employed as a lead compound for a new potential antidiabetic derived from terrestrial fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baron AD (1998) Postprandial hyperglycemia and α-glucosidase inhibitors. Diabetes Res Clin Pract 40:S51–S55

    Article  CAS  PubMed  Google Scholar 

  • Burla MC, Caliandro R, Camalli M, Carrozzini B, Cascarano GL, et al (2007) SIR 2008 (part of IL MILIONE structure determination and refinement package). J Appl Crystallogr 40:609–613

    Article  CAS  Google Scholar 

  • Campbell A, Maidment MS, Pick JH, Stevenson DFM (1985) Synthesis of (E)- and (Z)-pulvinones. J Chem Soc Perkin Trans 1(8):1567–1576

    Article  Google Scholar 

  • Cheng AYY, Josse RG (2004) Intestinal absorption inhibitors for type 2 diabetes mellitus: prevention and treatment. Drug Discov Today 192:201–206

    Google Scholar 

  • Choudary MI, Musharraf SG, Mukhmor T, Shaheen F, Ali S, Rahman A (2004) Isolation of bioactive compounds from Aspergillus terreus. Z Naturfosch B Chem Sci 59(3):324–328

    Google Scholar 

  • Creagh DC, Hubbell JH (1992) International tables for crystallography. Wilson AJC (ed) vol C. Kluwer Academic Publishers, Boston, Table 4.2.4.3, p 200–206

  • Cromer DT, Waber JT (1974) International tables for x-ray crystallography. vol IV. The Kynoch Press, Birmingham Table 2.2 A

  • Dewi RT, Iskandar Y, Hanafi M, Kardono LBS, Angelina M, Dewijanti DI, Banjarnahor SDS (2007) Inhibitory effect of koji Aspergillus terreus on α-glucosidase activity and postprandial hyperglycemia. Pak J Biol Sci 10(18):3131–3135

    Article  PubMed  Google Scholar 

  • Dewi RT, Tachibana S, Darmawan A (2012) Antidiabetic and antioxidative activities of butyrolactone I from Aspergillus terreus MC751. World Acad Sci Eng Technol 70:882–887

    Google Scholar 

  • Dewi RT, Tachibana S, Darmawan A (2014) Effect on α-glucosidase inhibition and antioxidant activities of butyrolactone derivatives from Aspergillus terreus MC751. Med Chem Res 23:454–460

    Article  CAS  Google Scholar 

  • Du ZY, Liu RR, Shao WY, Mao XP, Ma L, Gu LQ, Huang ZS, Chan ASC (2006) α-Glucosidase inhibitions of natural curcuminoid and curcumin analogs. Eur J Med Chem 41(2):213–218

    Article  CAS  PubMed  Google Scholar 

  • Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2002) Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23(5):599–622

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Guo W, Wang Q, Zhang L, Zhu M, Zhu T, Gu Q, Wang W, Li D (2013) Aspulvinone from a mangrove rhizosphere soil-derived fungus Aspergillus terreus Gwq-48 with anti-influenza A viral (H1N1) activity. Bioorg Med Chem Lett 23:1776–1778

    Article  CAS  PubMed  Google Scholar 

  • Ingavat N, Dobereiner J, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P (2009) Aspergillusol A, an α-glucosidase inhibitor from the marine-derived fungus Aspergillus aculeatus. J Nat Prod 72:2052–2409

    Article  Google Scholar 

  • Jo SH, Ka EH, Lee HS, Jang HD, Kwon YI (2009) Comparison of antioxidant potential and rat intestinal α-glucosidases inhibitory activities of quercetin, rutin, and isoquercetin. IJARNP 2:52–60

    Google Scholar 

  • Kim YM, Wang MH, Rhee HI (2004) A novel α-glucosidase inhibitor from pine bark. Carbohydr Res 339:715–717

    Article  CAS  PubMed  Google Scholar 

  • Kim YM, Jeong YK, Wang MH, Lee WY, Rhee HI (2005) Inhibitory effect of pine extract on α-glucosidase activity and postprandial hyperglycemia. Nutrition 21:756–761

    Article  CAS  PubMed  Google Scholar 

  • Kim KY, Nam KA, Kurihara H, Kim SM (2008) Potent α-glucosidase inhibitors from red alga Grateloupia elliptica. Phytochemistry 69:2820–2825

    Article  CAS  PubMed  Google Scholar 

  • Li YQ, Zhou FC, Gao F, Bian JS, Shan F (2009) Comparative evaluation of quercetin, isoquercetin, and rutin as inhibitors of α-glucosidase. J Agric Food Chem 57:11463–11468

    Article  CAS  PubMed  Google Scholar 

  • Mayur B, Sandesh S, Shruti S, Yum SS (2010) Antioxidant and α-glucosidase inhibitory properties of Carpesium abrotanoides L. J Med Plant Res 4:1547–1553

    Google Scholar 

  • Meng P, Zhou X (2012) α-Glucosidase inhibitory effect of a bioactivity guided fraction GIB-638 from Streptomyces fradiae PWH638. Med Chem Res 21:4422–4429

    Article  CAS  Google Scholar 

  • Nagia MMS, El-Metwally MM, Shaaban M, El-Zalabani SM, Hanna AG (2012) Four butyrolactones and diverse bioactive secondary metabolites from terrestrial Aspergillus flavipes MM2: isolation and structure determination. Org Med Chem Lett 2:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Ojima N, Takenaka S, Seto S (1973) New butenolide from Aspergillus terreus. Phytochemistry 12:2527–2529

    Article  CAS  Google Scholar 

  • Ramachandran A, Snehalatha C, Ma RC (2013) Diabetes in South-East Asia: an update for 2013 for the IDF diabetes atlas. Diabetes Res Clin Pract. doi:10.1016/j.diabres.2013.11.011

  • Sancheti S, Sancheti S, Bafna M, Seo SY (2011) 2,4,6-Trihydroxybenzaldehyde as a potent antidiabetic agent alleviates postprandial hyperglycemia in normal and diabetic rats. Med Chem Res 20:1181–1187

    Article  CAS  Google Scholar 

  • Shibano M, Kakutani K, Taniguchi M, Yasuda M, Baba K (2008) Antioxidant constituents in the dayflower (Commelina communis L.) and their α-glucosidase inhibitory activity. J Nat Med 62:349–353

    Article  CAS  PubMed  Google Scholar 

  • Shihabudeen MS, Priscilla H, Thirumurugan K (2011) Cinnamon extract inhibits α-glucosidase activity and dampens postprandial glucose excursion in diabetic rats. Nutr Metab 8(46):p1–p11

    Google Scholar 

  • Tadera K, Minami Y, Takamatsu K, Matsuoka T (2006) Inhibitor of α-glucosidase and α-amylase by flavonoids. J Nutr Sci Vitaminol 52:149–153

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Miyazawa M (2012) Synthesis and structure-activity relationships of serotonin derivatives effect on α-glucosidase inhibition. Med Chem Res 21:1762–1770

    Article  CAS  Google Scholar 

  • Vertesy L, Burger H, Kenja J, Knauf M, Kogler H et al (2000) Kodaistatin, Novel Inhibitor of Glucose-6-Phosphate Translocase TI, from Aspergillus terreus thom DSM 11247. Isolated and structural elucidation. MEDLINE 53(7):677–686

    CAS  Google Scholar 

  • Yen, GC and Chen, HY (1995) Antioxidant activity of various tea extracts in relation to their antimutagenicity. J Agri Food Chem 43:27-32

    Article  CAS  Google Scholar 

  • Zhu PY, Yin LJ, Cheng YQ, Yamaki K, Mori Y, Su YC, Li LT (2008) Effect of sources of carbon and nitrogen on production of α-glucosidase inhibitor by a newly isolated strain of Bacillus subtilis B2. Food Chem 109:737–742

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are deeply thankful to Dr. Shigeki Mori of the Integrated Center for Sciences, Ehime University for obtaining the data of X-ray crystallography, and Prof. Dr Satoshi Yamauchi and Tuti Wukirsari M. Agr of Faculty of Agriculture, Ehime University for measurement of optical rotation. We also thank to Nina Artanti MSc for helping this manuscript preparation and valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizna Triana Dewi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dewi, R.T., Tachibana, S., Fajriah, S. et al. α-Glucosidase inhibitor compounds from Aspergillus terreus RCC1 and their antioxidant activity. Med Chem Res 24, 737–743 (2015). https://doi.org/10.1007/s00044-014-1164-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-1164-0

Keywords

Navigation