Skip to main content
Log in

A β-resorcylic macrolide from the seagrass-derived fungus Fusarium sp. PSU-ES73

  • Research Articles
  • Drug Design and Discovery
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

A new β-resorcylic macrolide, 5′-hydroxyzearalenone (1), and six known β-resorcylic macrolides were isolated from the seagrass-derived fungus Fusarium sp. PSU-ES73. Their structures were established by analysis of spectral data. All of the isolated compounds were evaluated for their antibacterial activity against Staphylococcus aureus, both standard and methicillin-resistant strains, as well as their antifungal activity against Cryptococcus neoformans. Only the known compound zearalenone (2) displayed weak antibacterial and antifungal activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bolliger, G. and Tamm, Ch., Vier neue metabolite von Giberella zeae: 5-formyl-zearalenon, 7′-dehydrozearalenon, 8′-hydroxy- und 8′-epi-hydroxy-zearalenon. Helv. Chim. Acta, 55, 3030–3048 (1972).

    Article  Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI). Reference method for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A4. Clinical and Laboratory Standards Institute, Wayne, Pa, (2002a).

    Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard M27-A2. Clinical and Laboratory Standards Institute, Wayne, Pa, (2002b).

    Google Scholar 

  • Drummond, A. J. and Waigh, R. D., The development of microbiological methods for phytochemical screening. Recent Research Developments in Phytochemistry, 4, pp. 143–152, (2000).

    CAS  Google Scholar 

  • Fenical, W., Jensen, P. R., and Rowley, D. C., Halovir, an antiviral marine natural product, and derivatives thereof. WO2000035943 (2000).

  • Folmer, F., Jaspars, M., Dicato, M., and Diederich, M., Photosynthetic marine organisms as a source of anticancer compounds. Phytochem. Rev., 9, 557–579 (2010).

    Article  CAS  Google Scholar 

  • Gillan, F. T., Hogg, R. W., and Drew, E. A., The sterol and fatty acid compositions of seven tropical seagrasses from North Queensland, Australia. Phytochemistry, 23, 2817–2821 (1984).

    Article  CAS  Google Scholar 

  • Kontiza, I., Stavri, M., Zloh, M., Vagias, C., Gibbons, S., and Roussis, V., New metabolites with antibacterial activity from the marine angiosperm Cymodocea nodosa. Tetrahedron, 64, 1696–1702 (2008).

    Article  CAS  Google Scholar 

  • Kornblum, S. S. and Stoopak, S. B., A new tablet disintegrating agent: cross-linked polyvinylpyrrolidone. J. Pharm. Sci., 62, 43–49 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Ley, S. V. and Burckhardt, S., The use of π-allyltricarbonyliron lactone complexes in the synthesis of the resorcylic macrolides α- and β-zearalenol. J. Chem. Soc. Perkin Trans. I, 3028–3030 (2000).

  • Miles, C. O., Erasmuson, A. F., Wilkins, A. L., Towers, N. R., Smith, B. L., Garthwaite, I., Scahill, B. G., and Hansen, R. P., Ovine metabolism of zearalenone to α-zearalanol (zeranol). J. Agric. Food Chem., 44, 3244–3250 (1996).

    Article  CAS  Google Scholar 

  • Nichols, P. D. and Johns, R. B., Lipids of the tropical seagrass Thallassia hemprichii. Phytochemistry, 24, 81–84 (1985).

    Article  CAS  Google Scholar 

  • Ohtani, I., Kusumi, T., Kashman, Y., and Kakisawa, H., High-field FT NMR application of Mosher’s method. The absolute configurations of marine terpenoids. J. Am. Chem. Soc., 113, 4092–4096 (1991).

    Article  CAS  Google Scholar 

  • Qi, S.-H., Zhang, S., Qian, P.-Y., and Wang, B.-G., Antifeedant, antibacterial, and antilarval compounds from the South China Sea seagrass Enhalus acoroides. Botanica Marina, 51, 441–447 (2008).

    Article  CAS  Google Scholar 

  • Richardson, K. E., Hagler, W. M., and Mirocha, C. J., Production of zearalenone, α- and β-zearalenol, and α- and β- zearalanol by Fusarium spp. in rice culture. J. Agric. Food Chem., 33, 862–866 (1985).

    Article  CAS  Google Scholar 

  • Taub, D., Girotra, N. N., Hoffsommer, R. D., Kuo, C. H., Slates, H. L., Weber, S., and Wendler, N. L., Total synthesis of the macrolide, zearalenone. Tetrahedron, 24, 2443–2461 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Xiao, Y., Chen, J., Zhang, Y., Shao, Z., and Xu, D., Studies on the chemical constituents of Fusarium sp. from seagrass endophytic fungus. Zhongguo Haiyang Yaowu, 23, 11–13 (2004).

    CAS  Google Scholar 

  • Zhao, L. L., Gai, Y., Kobayashi, H., Hu, C. Q., and Zhang, H. P., 5′-Hydroxyzearalenol, a new β-resorcylic macrolide from Fusarium sp. 05ABR26. Chin. Chem. Lett., 19, 1089–1092 (2008).

    Article  CAS  Google Scholar 

  • Zinedine, A., Soriano, J. M., Moltó, J. C., and Mañes, J., Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem. Toxicol., 45, 1–18 (2007).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vatcharin Rukachaisirikul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arunpanichlert, J., Rukachaisirikul, V., Sukpondma, Y. et al. A β-resorcylic macrolide from the seagrass-derived fungus Fusarium sp. PSU-ES73. Arch. Pharm. Res. 34, 1633–1637 (2011). https://doi.org/10.1007/s12272-011-1007-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-011-1007-1

Key words

Navigation