Skip to main content

Advertisement

Log in

The Role of Regulatory T Cells in Heart Repair After Myocardial Infarction

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Myocardial infarction (MI) remains one of the leading causes of death worldwide. Inflammation and immune responses after MI are of significance to the adverse cardiac remodeling. Regulatory T cells (Tregs) play an important role in suppressing the immune response and thus benefit the post-MI remodeling. After MI, damaged cardiomyocytes may be replaced by scar tissue, leading to systolic and diastolic dysfunction and subsequently adverse remodeling. In this review, we provide an overview of the function and possible mechanisms of Tregs in post-MI heart repair. Specifically, after the occurrence of MI, Tregs infiltrated to peri-infarcted myocardium through CCR5 pathway, CXCR4-CXCL12 axis, and Hippo pathway. Normal functional Tregs can reduce the size of the MI area, improve heart function, and ameliorate myocardial remodeling by inhibiting proinflammatory cells accumulation, changing the proportion of macrophages phenotypes, improving myocardial fibrosis, protecting myocardial cells, and promoting angiogenesis. Eventually, Functional Tregs recruited into the heart can improve MI outcomes. Therefore, targeted therapies with Tregs might provide a promising approach to the treatment of MI remodeling.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmetterer KG, Neunkirchner A, Pickl WF. Naturally occurring regulatory T cells: markers, mechanisms, and manipulation. FASEB J : Off Publ Federation Am Soc Exp Biol. 2012;26(6):2253–76. https://doi.org/10.1096/fj.11-193672.

    Article  CAS  Google Scholar 

  2. Smigiel KS, Srivastava S, Stolley JM, Campbell DJ. Regulatory T-cell homeostasis: steady-state maintenance and modulation during inflammation. Immunol Rev. 2014;259(1):40–59. https://doi.org/10.1111/imr.12170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hu W, Wang ZM, Feng Y, Schizas M, Hoyos BE, van der Veeken J, Verter JG, Bou-Puerto R, Rudensky AY. Regulatory T cells function in established systemic inflammation and reverse fatal autoimmunity. Nat Immunol. 2021;22(9):1163–74. https://doi.org/10.1038/s41590-021-01001-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Raffin C, Vo LT, Bluestone JA. T cell-based therapies: challenges and perspectives. Nat Rev Immunol. 2020;20(3):158–72. https://doi.org/10.1038/s41577-019-0232-6.

    Article  CAS  PubMed  Google Scholar 

  5. Bluestone JA, Tang Q. T cells-the next frontier of cell therapy. Science (New York, NY). 2018;362(6411):154–5. https://doi.org/10.1126/science.aau2688.

    Article  CAS  Google Scholar 

  6. Scholz AS, Handke J, Gillmann H-J, Zhang Q, Dehne S, Janssen H, Arens C, Espeter F, Sander A, Giannitsis E, Uhle F, Weigand MA, Motsch J, Larmann J. Frontline Science: Low regulatory T cells predict perioperative major adverse cardiovascular and cerebrovascular events after noncardiac surgery. J Leukoc Biol. 2020;107(5):717–30. https://doi.org/10.1002/JLB.5HI1018-392RR.

    Article  CAS  PubMed  Google Scholar 

  7. Wang YP, Xie Y, Ma H, Su SA, Wang YD, Wang JA, Xiang MX. Regulatory T lymphocytes in myocardial infarction: a promising new therapeutic target. Int J Cardiol. 2016;203:923–8. https://doi.org/10.1016/j.ijcard.2015.11.078.

    Article  PubMed  Google Scholar 

  8. Kaplan A, Altara R, Eid A, Booz GW, Zouein FA. Update on the Protective role of regulatory T cells in myocardial infarction: A promising therapy to repair the heart. J Cardiovasc Pharmacol. 2016;68(6):401–13. https://doi.org/10.1097/fjc.0000000000000436.

    Article  CAS  PubMed  Google Scholar 

  9. Saxena A, Dobaczewski M, Rai V, Haque Z, Chen W, Li N, Frangogiannis NG. Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function. Am J Physiol Heart Circ Physiol. 2014;307(8):1233–42.

    Article  Google Scholar 

  10. Weirather J, Hofmann UDW, Beyersdorf N, Ramos GC, Vogel B, Frey A, Ertl G, Kerkau T, Frantz S. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ Res. 2014;115(1):55–67. https://doi.org/10.1161/CIRCRESAHA.115.303895.

    Article  CAS  PubMed  Google Scholar 

  11. Yan X, Anzai A, Katsumata Y, Matsuhashi T, Ito K, Endo J, Yamamoto T, Takeshima A, Shinmura K, Shen W, Fukuda K, Sano M. Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J Mol Cell Cardiol. 2013;62:24–35. https://doi.org/10.1016/j.yjmcc.2013.04.023.

    Article  CAS  PubMed  Google Scholar 

  12. Tang T-T, Yuan J, Zhu Z-F, Zhang W-C, Xiao H, Xia N, Yan X-X, Nie S-F, Liu J, Zhou S-F, Li J-J, Yao R, Liao M-Y, Tu X, Liao Y-H, Cheng X. Regulatory T cells ameliorate cardiac remodeling after myocardial infarction. Basic Res Cardiol. 2012;107(1):232. https://doi.org/10.1007/s00395-011-0232-6.

    Article  PubMed  Google Scholar 

  13. Dobaczewski M, Xia Y, Bujak M, Gonzalez-Quesada C, Frangogiannis NG. CCR5 signaling suppresses inflammation and reduces adverse remodeling of the infarcted heart, mediating recruitment of regulatory T cells. Am J Pathol. 2010;176(5):2177–87. https://doi.org/10.2353/ajpath.2010.090759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang Y, Dembowsky K, Chevalier E, Stüve P, Korf-Klingebiel M, Lochner M, Napp LC, Frank H, Brinkmann E, Kanwischer A, Bauersachs J, Gyöngyösi M, Sparwasser T, Wollert KC. C-X-C Motif Chemokine receptor 4 blockade promotes tissue repair after myocardial infarction by enhancing regulatory T cell mobilization and immune-regulatory function. Circulation. 2019;139(15):1798–812. https://doi.org/10.1161/CIRCULATIONAHA.118.036053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ramjee V, Li D, Manderfield LJ, Liu F, Engleka KA, Aghajanian H, Rodell CB, Lu W, Ho V, Wang T, Li L, Singh A, Cibi DM, Burdick JA, Singh MK, Jain R, Epstein JA. Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction. J Clin Investig. 2017;127(3):899–911. https://doi.org/10.1172/JCI88759.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xia N, Lu Y, Gu M, Li N, Liu M, Jiao J, Zhu Z, Li J, Li D, Tang T, Lv B, Nie S, Zhang M, Liao M, Liao Y, Yang X, Cheng X. A unique population of regulatory T cells in heart potentiates cardiac protection from myocardial infarction. Circulation. 2020;142(20):1956–73. https://doi.org/10.1161/CIRCULATIONAHA.120.046789.

    Article  CAS  PubMed  Google Scholar 

  17. Zacchigna S, Martinelli V, Moimas S, Colliva A, Anzini M, Nordio A, Costa A, Rehman M, Vodret S, Pierro C, Colussi G, Zentilin L, Gutierrez MI, Dirkx E, Long C, Sinagra G, Klatzmann D, Giacca M. Paracrine effect of regulatory T cells promotes cardiomyocyte proliferation during pregnancy and after myocardial infarction. Nat Commun. 2018;9(1):2432. https://doi.org/10.1038/s41467-018-04908-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiao J, Yu K, Li M, Xiong C, Wei Y, Zeng Q. The IL-2/Anti-IL-2 Complex attenuates cardiac ischaemia-reperfusion injury through expansion of regulatory T Cells. Cell Physiol Biochem : Int J Exp Cell Physiol, Biochem Pharmacol. 2017;44(5):1810–27. https://doi.org/10.1159/000485818.

    Article  CAS  Google Scholar 

  19. Yan X, Zhang H, Fan Q, Hu J, Tao R, Chen Q, Iwakura Y, Shen W, Lu L, Zhang Q, Zhang R. Dectin-2 deficiency modulates Th1 differentiation and improves wound healing after myocardial infarction. Circ Res. 2017;120(7):1116–29. https://doi.org/10.1161/CIRCRESAHA.116.310260.

    Article  CAS  PubMed  Google Scholar 

  20. Feng W, Li W, Liu W, Wang F, Li Y, Yan W. IL-17 induces myocardial fibrosis and enhances RANKL/OPG and MMP/TIMP signaling in isoproterenol-induced heart failure. Exp Mol Pathol. 2009;87(3):212–8. https://doi.org/10.1016/j.yexmp.2009.06.001.

    Article  CAS  PubMed  Google Scholar 

  21. Xia N, Jiao J, Tang TT, Lv BJ, Lu YZ, Wang KJ, Zhu ZF, Mao XB, Nie SF, Wang Q, Tu X, Xiao H, Liao YH, Shi GP, Cheng X. Activated regulatory T-cells attenuate myocardial ischaemia/reperfusion injury through a CD39-dependent mechanism. Clin Sci (London, England : 197). 2015;128(10):679–93. https://doi.org/10.1042/CS20140672.

    Article  CAS  Google Scholar 

  22. Fang J, Hu F, Ke D, Yan Y, Liao Z, Yuan X, Wu L, Jiang Q, Chen L. N, N-dimethylsphingosine attenuates myocardial ischemia-reperfusion injury by recruiting regulatory T cells through PI3K/Akt pathway in mice. Basic Res Cardiol. 2016;111(3):32. https://doi.org/10.1007/s00395-016-0548-3.

    Article  CAS  PubMed  Google Scholar 

  23. Jia D, Jiang H, Weng X, Wu J, Bai P, Yang W, Wang Z, Hu K, Sun A, Ge J. Interleukin-35 promotes macrophage survival and improves wound healing after myocardial infarction in mice. Circ Res. 2019;124(9):1323–36. https://doi.org/10.1161/CIRCRESAHA.118.314569.

    Article  CAS  PubMed  Google Scholar 

  24. Yang K, Zhang Y, Xu C, Li X, Li D. mTORC1 signaling is crucial for regulatory T cells to suppress macrophage-mediated inflammatory response after acute myocardial infarction. Immunol Cell Biol. 2016;94(3):274–84. https://doi.org/10.1038/icb.2015.88.

    Article  CAS  PubMed  Google Scholar 

  25. Zeng Z, Yu K, Chen L, Li W, Xiao H, Huang Z. interleukin-2/anti-interleukin-2 immune complex attenuates cardiac remodeling after myocardial infarction through expansion of regulatory T cells. J Immunol Res. 2016;2016:8493767. https://doi.org/10.1155/2016/8493767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu H, Wu J, Cao C, Ma L. Exosomes derived from regulatory T cells ameliorate acute myocardial infarction by promoting macrophage M2 polarization. IUBMB Life. 2020;72(11):2409–19. https://doi.org/10.1002/iub.2364.

    Article  CAS  PubMed  Google Scholar 

  27. Gulati A, Jabbour A, Ismail TF, Guha K, Khwaja J, Raza S, Morarji K, Brown TD, Ismail NA, Dweck MR, Di Pietro E, Roughton M, Wage R, Daryani Y, O’Hanlon R, Sheppard MN, Alpendurada F, Lyon AR, Cook SA, Cowie MR, Assomull RG, Pennell DJ, Prasad SK. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA. 2013;309(9):896–908. https://doi.org/10.1001/jama.2013.1363.

    Article  CAS  PubMed  Google Scholar 

  28. Yokota T, McCourt J, Ma F, Ren S, Li S, Kim TH, Kurmangaliyev YZ, Nasiri R, Ahadian S, Nguyen T, Tan XHM, Zhou Y, Wu R, Rodriguez A, Cohn W, Wang Y, Whitelegge J, Ryazantsev S, Khademhosseini A, Teitell MA, Chiou PY, Birk DE, Rowat AC, Crosbie RH, Pellegrini M, Seldin M, Lusis AJ, Deb A. Type V collagen in scar tissue regulates the size of scar after heart injury. Cell. 2020;182(3):545-562.e23. https://doi.org/10.1016/j.cell.2020.06.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khan M, Nickoloff E, Abramova T, Johnson J, Verma SK, Krishnamurthy P, Mackie AR, Vaughan E, Garikipati VN, Benedict C, Ramirez V, Lambers E, Ito A, Gao E, Misener S, Luongo T, Elrod J, Qin G, Houser SR, Koch WJ, Kishore R. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res. 2015;117(1):52–64. https://doi.org/10.1161/circresaha.117.305990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sharir R, Semo J, Shimoni S, Ben-Mordechai T, Landa-Rouben N, Maysel-Auslender S, Shaish A, Entin-Meer M, Keren G, George J. Experimental myocardial infarction induces altered regulatory T cell hemostasis, and adoptive transfer attenuates subsequent remodeling. PLoS ONE. 2014;9(12):e113653. https://doi.org/10.1371/journal.pone.0113653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li W, Zhang F, Ju C, Lv S, Huang K. The role of CD27-CD70 signaling in myocardial infarction and cardiac remodeling. Int J Cardiol. 2019;278:210–6. https://doi.org/10.1016/j.ijcard.2018.11.132.

    Article  PubMed  Google Scholar 

  32. Kwon SP, Hwang B-H, Park E-H, Kim HY, Lee J-R, Kang M, Song SY, Jung M, Sohn HS, Kim E, Kim CW, Lee KY, Oh GC, Choo E, Lim S, Chung Y, Chang K, Kim B-S. Nanoparticle-Mediated blocking of excessive inflammation for prevention of heart failure following myocardial infarction. Small. 2021;17(32):e2101207. https://doi.org/10.1002/smll.202101207.

    Article  CAS  PubMed  Google Scholar 

  33. Chen WCW, Lee BG, Park DW, Kim K, Chu H, Kim K, Huard J, Wang Y. Controlled dual delivery of fibroblast growth factor-2 and Interleukin-10 by heparin-based coacervate synergistically enhances ischemic heart repair. Biomaterials. 2015;72:138–51. https://doi.org/10.1016/j.biomaterials.2015.08.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang N, Liu C, Wang X, He T, Li L, Liang X, Wang L, Song L, Wei Y, Wu Q, Gong C. Hyaluronic acid oligosaccharides improve myocardial function reconstruction and angiogenesis against myocardial infarction by regulation of macrophages. Theranostics. 2019;9(7):1980–92. https://doi.org/10.7150/thno.31073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tang J, Shen Y, Chen G, Wan Q, Wang K, Zhang J, Qin J, Liu G, Zuo S, Tao B, Yu Y, Wang J, Lazarus M, Yu Y. Activation of E-prostanoid 3 receptor in macrophages facilitates cardiac healing after myocardial infarction. Nat Commun. 2017;8:14656. https://doi.org/10.1038/ncomms14656.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bansal SS, Ismahil MA, Goel M, Zhou G, Rokosh G, Hamid T, Prabhu SD. Dysfunctional and proinflammatory regulatory T-lymphocytes are essential for adverse cardiac remodeling in ischemic cardiomyopathy. Circulation. 2019;139(2):206–21. https://doi.org/10.1161/CIRCULATIONAHA.118.036065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gerriets VA, Kishton RJ, Johnson MO, Cohen S, Siska PJ, Nichols AG, Warmoes MO, de Cubas AA, MacIver NJ, Locasale JW, Turka LA, Wells AD, Rathmell JC. Foxp3 and Toll-like receptor signaling balance T cell anabolic metabolism for suppression. Nat Immunol. 2016;17(12):1459–66. https://doi.org/10.1038/ni.3577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brunstein CG, Miller JS, Cao Q, McKenna DH, Hippen KL, Curtsinger J, Defor T, Levine BL, June CH, Rubinstein P, McGlave PB, Blazar BR, Wagner JE. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood. 2011;117(3):1061–70. https://doi.org/10.1182/blood-2010-07-293795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marek-Trzonkowska N, Myśliwiec M, Dobyszuk A, Grabowska M, Derkowska I, Juścińska J, Owczuk R, Szadkowska A, Witkowski P, Młynarski W, Jarosz-Chobot P, Bossowski A, Siebert J, Trzonkowski P. Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets - results of one year follow-up. Clin Immunol. 2014;153(1):23–30. https://doi.org/10.1016/j.clim.2014.03.016.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The graphical illustration was created in BioRender.com.

Funding

This work was supported by the National Nature Scientific Funding of China (No. 82072555, No. 81871858, No. 82172550 and No. 81702240), National Natural Science Foundation of Hunan Province (No. 2021JJ30948), and Chinese Cardiovascular Association-Access fund (2019-CCA-ACCESS-023).

Author information

Authors and Affiliations

Authors

Contributions

Yishu Wang drafted the manuscript and performed literature search, Danyan Xu critically revised the work. Chunfang Wang and Li Shen read the draft and gave valuable suggestions. All authors approved the final manuscript.

Corresponding author

Correspondence to Danyan Xu.

Ethics declarations

Ethics Approval

The manuscript does not contain clinical studies or patient data.

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Nicola Smart oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, C., Shen, L. et al. The Role of Regulatory T Cells in Heart Repair After Myocardial Infarction. J. of Cardiovasc. Trans. Res. 16, 590–597 (2023). https://doi.org/10.1007/s12265-022-10290-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10290-5

Keywords

Navigation