Skip to main content
Log in

Variability of Mouse Left Ventricular Function Assessment by 11.7 Tesla MRI

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

We studied intraobserver (n = 24), interobserver (n = 24) and interexperiment (n = 12) reproducibility of left ventricular (LV) mass and volume measurements in mice using an 11.7 T MRI system. The LV systolic function was assessed with a short-axis FLASH-cine sequence in 29 mice, including animals having undergone transverse aortic constriction. Bland-Altman and regression analysis were used to compare the different data sets. Reproducibility was excellent for the LV mass and end-diastolic volume (coefficient of variability (CoV) between 5.4 and 11.8 %), good for end-systolic volume (CoV 15.2–19.4 %) and moderate for stroke volume and ejection fraction (CoV 14.7–20.9 %). We found an excellent correlation between LV mass determined by MRI and ex vivo morphometric data (r = 0.92). In conclusion, LV systolic function can be assessed on an 11.7 T MRI scanner with high reproducibility for most parameters, as needed in longitudinal studies. However, data should be interpreted taking into account the moderate reproducibility of small volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CMR:

Cardiovascular magnetic resonance

CoV:

Coefficient of variability

EDV:

End-diastolic volume

EF:

Ejection fraction

ESV:

End-systolic volume

FLASH:

Fast low angle shot

LV:

Left ventricle

SV:

Stroke volume

TL:

Tibial length

References

  1. Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., de Ferranti, S., Després, J., Fullerton, H. J., Howard, V. J., Huffman, M. D., Judd, S. E., Kissela, B. M., Lackland, D. T., Lichtman, J. H., Lisabeth, L. D., Liu, S., Mackey, R. H., Matchar, D. B., McGuire, D. K., Mohler, E. R., 3rd, Moy, C. S., Muntner, P., Mussolino, M. E., Nasir, K., Neumar, R. W., Nichol, G., Palaniappan, L., Pandey, D. K., Reeves, M. J., Rodriguez, C. J., Sorlie, P. D., Stein, J., Towfighi, A., Turan, T. N., Virani, S. S., Willey, J. Z., Woo, D., Yeh, R. W., & Turner, M. B. (2015). Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation, 131(4), e29–e322.

    Article  PubMed  Google Scholar 

  2. Schneider, J. E., Wiesmann, F., Lygate, C. A., & Neubauer, S. (2006). How to perform an accurate assessment of cardiac function in mice using high-resolution magnetic resonance imaging. Journal of Cardiovascular Magnetic Resonance, 8, 693–701.

    Article  PubMed  Google Scholar 

  3. Vallée, J. P., Ivancevic, M. K., Nguyen, D., Morel, D. R., & Jaconi, M. (2004). Current status of cardiac MRI in small animals. Magnetic Resonance Materials in Physics, Biology and Medicine, 17(3–6), 149–156.

    Article  Google Scholar 

  4. Epstein, F. H. (2007). MR in mouse models of cardiac disease. NMR in Biomedicine, 20(3), 238–255.

    Article  PubMed  Google Scholar 

  5. Price, A. N., Cheung, K. K., Cleary, J. O., Campbell, A. E., Riegler, J., & Lythgoe, M. F. (2010). Cardiovascular magnetic resonance imaging in experimental models. The Open Cardiovascular Medicine Journal, 4, 278–292.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Vandsburger, M. H., & Epstein, F. H. (2011). Emerging MRI methods in translational cardiovascular research. Journal of Cardiovascular Translational Research, 4(4), 477–492.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Akki, A., Gupta, A., & Weiss, R. G. (2013). Magnetic resonance imaging and spectroscopy of the murine cardiovascular system. American Journal of Physiology Heart and Circulation Physiology, 304(5), H633–H648.

    Article  CAS  Google Scholar 

  8. Meßner, N. M., Zöllner, F. G., Kalayciyan, R., & Schad, L. R. (2014). Pre-clinical functional magnetic resonance imaging part II: the heart. Zeitschrift für Medizinische Physik, 24(4), 307–322.

    Article  PubMed  Google Scholar 

  9. Kraff, O., Fischer, A., Nagel, A. M., Mönninghoff, C., & Ladd, M. E. (2015). MRI at 7 tesla and above: demonstrated and potential capabilities. Journal of Magnetic Resonance Imaging, 41(1), 13–33.

    Article  PubMed  Google Scholar 

  10. Ruff, J., Wiesmann, F., Hiller, K. H., Voll, S., von Kienlin, M., Bauer, W. R., Rommel, E., Neubauer, S., & Haase, A. (1998). Magnetic resonance microimaging for noninvasive quantification of myocardial function and mass in the mouse. Magnetic Resonance in Medicine, 40, 43–48.

    Article  CAS  PubMed  Google Scholar 

  11. Schneider, J. E., Cassidy, P. J., Lygate, C., Tyler, D. J., Wiesmann, F., Grieve, S. M., Hulbert, K., Clarke, K., & Neubauer, S. (2003). Fast, high-resolution in vivo cine magnetic resonance imaging in normal and failing mouse hearts on a vertical 11.7 T system. Journal of Magnetic Resonance Imaging, 18, 691–701.

    Article  PubMed  Google Scholar 

  12. Tyler, D. J., Lygate, C. A., Schneider, J. E., Cassidy, P. J., Neubauer, S., & Clarke, K. (2006). CINE-MR imaging of the normal and infarcted rat heart using an 11.7 T vertical bore MR system. Journal of Cardiovascular Magnetic Resonance, 8, 327–333.

    Article  PubMed  Google Scholar 

  13. Stuckey, D. J., Carr, C. A., Tyler, D. J., & Clarke, K. (2008). Cine-MRI versus two-dimensional echocardiography to measure in vivo left ventricular function in rat heart. NMR in Biomedicine, 21(7), 765–772.

    Article  PubMed  Google Scholar 

  14. Heijman, E., Aben, J. P., Penners, C., Niessen, P., Guillaume, R., van Eys, G., Nicolay, K., & Strijkers, G. J. (2008). Evaluation of manual and automatic segmentation of the mouse heart from CINE MR images. Journal of Magnetic Resonance Imaging, 27(1), 86–93.

    Article  PubMed  Google Scholar 

  15. van de Weijer, T., van Ewijk, P. A., Zandbergen, H. R., Slenter, J. M., Kessels, A. G., Wildberger, J. E., Hesselink, M. K., Schrauwen, P., Schrauwen-Hinderling, V. B., & Kooi, M. E. (2012). Geometrical models for cardiac MRI in rodents: comparison of quantification of left ventricular volumes and function by various geometrical models with a full-volume MRI data set in rodents. American Journal of Physiology Heart and Circulation Physiology, 302(3), H709–H715.

    Article  Google Scholar 

  16. Wiesmann, F., Ruff, J., Engelhardt, S., Hein, L., Dienesch, C., Leupold, A., Illinger, R., Frydrychowicz, A., Hiller, K. H., Rommel, E., Haase, A., Lohse, M. J., & Neubauer, S. (2001). Dobutamine-stress magnetic resonance microimaging in mice: acute changes of cardiac geometry and function in normal and failing murine hearts. Circulation Research, 88, 563–569.

    Article  CAS  PubMed  Google Scholar 

  17. Rockman, H. A., Ross, R. S., Harris, A. N., Knowlton, K. U., Steinhelper, M. E., Field, L., Ross, J., & Chien, K. R. (1991). Segregation of atrial specific and inducible expression of an ANF transgene in an in vivo murine model of cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 88, 8277–8281.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hu, P., Zhang, D., Swenson, L., Chakrabarti, G., Abel, E. D., & Litwin, S. E. (2003). Minimally invasive aortic banding in mice: effects of altered cardiomyocyte insulin signaling during pressure overload. American Journal of Physiology Heart and Circulation Physiology, 285(3), H1261–H1269.

    Article  CAS  Google Scholar 

  19. Kober, F., Iltis, I., Cozzone, P. J., & Bernard, M. (2004). Cine-MRI assessment of cardiac function in mice anesthetized with ketamine/xylazine and isoflurane. Magnetic Resonance Materials in Physics, Biology and Medicine, 17(3–6), 157–161.

    Article  CAS  Google Scholar 

  20. Heiberg, E., Sjögren, J., Ugander, M., Carlsson, M., Engblom, H., & Arheden, H. (2010). Design and validation of segment-freely available software for cardiovascular image analysis. BMC Medical Imaging, 10, 1.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Bland, J. M., & Altman, D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 1, 307–310.

    Article  CAS  PubMed  Google Scholar 

  22. Hoit, B. D., Khoury, S. F., Kranias, E. G., Ball, N., & Walsh, R. A. (1995). In vivo echocardiographic detection of enhanced left ventricular function in gene-targeted mice with phospholamban deficiency. Circulation Research, 77(3), 632–637.

    Article  CAS  PubMed  Google Scholar 

  23. Tanaka, N., Dalton, N., Mao, L., Rockman, H. A., Peterson, K. L., Gottshall, K. R., Hunter, J. J., Chien, K. R., & Ross, J., Jr. (1996). Transthoracic echocardiography in models of cardiac disease in the mouse. Circulation, 94(5), 1109–1117.

    Article  CAS  PubMed  Google Scholar 

  24. Yang, X. P., Liu, Y. H., Rhaleb, N. E., Kurihara, N., Kim, H. E., & Carretero, O. A. (1999). Echocardiographic assessment of cardiac function in conscious and anesthetized mice. American Journal of Physiology Heart and Circulation Physiology, 277, H1967–H1974.

    CAS  Google Scholar 

  25. Collins, K. A., Korcarz, C. E., Shroff, S. G., Bednarz, J. E., Fentzke, R. C., Lin, H., Leiden, J. M., & Lang, R. M. (2001). Accuracy of echocardiographic estimates of left ventricular mass in mice. American Journal of Physiology Heart and Circulation Physiology, 280(5), H1954–H1962.

    CAS  Google Scholar 

  26. Ram, R., Mickelsen, D. M., Theodoropoulos, C., & Blaxall, B. C. (2011). New approaches in small animal echocardiography: imaging the sounds of silence. American Journal of Physiology Heart and Circulation Physiology, 301(5), H1765–H1780.

    Article  CAS  Google Scholar 

  27. Ghanem, A., Roll, W., Hashemi, T., Dewald, O., Djoufack, P. C., Fink, K. B., Schrickel, J., Lewalter, T., Luderitz, B., & Tiemann, K. (2006). Echocardiographic assessment of left ventricular mass in neonatal and adult mice: accuracy of different echocardiographic methods. Echocardiography, 23, 900–907.

    Article  PubMed  Google Scholar 

  28. Amundsen, B. H., Ericsson, M., Seland, J. G., Pavlin, T., Ellingsen, Ø., & Brekken, C. (2011). A comparison of retrospectively self-gated magnetic resonance imaging and high-frequency echocardiography for characterization of left ventricular function in mice. Laboratory Animal, 45(1), 31–37.

    Article  CAS  Google Scholar 

  29. Jacoby, C., Molojavyi, A., Flögel, U., Merx, M. W., Ding, Z., & Schrader, J. (2006). Direct comparison of magnetic resonance imaging and conductance microcatheter in the evaluation of left ventricular function in mice. Basic Research in Cardiology, 101(1), 87–95.

    Article  PubMed  Google Scholar 

  30. Nielsen, J. M., Kristiansen, S. B., Ringgaard, S., Nielsen, T. T., Flyvbjerg, A., Redington, A. N., & Bøtker, H. E. (2007). Left ventricular volume measurement in mice by conductance catheter: evaluation and optimization of calibration. American Journal of Physiology Heart and Circulation Physiology, 293(1), H534–H540.

    Article  CAS  Google Scholar 

  31. Luijnenburg, S. E., Robbers-Visser, D., Moelker, A., Vliegen, H. W., Mulder, B. J., & Helbing, W. A. (2010). Intra-observer and interobserver variability of biventricular function, volumes and mass in patients with congenital heart disease measured by CMR imaging. International Journal of Cardiovascular Imaging, 26(1), 57–64.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Janiczek, R. L., Blackman, B. R., Roy, R. J., Meyer, C. H., Acton, S. T., & Epstein, F. H. (2011). Three-dimensional phase contrast angiography of the mouse aortic arch using spiral MRI. Magnetic Resonance in Medicine, 66, 1382–1390.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Julie Magat and Hassan Jassar for their assistance during the MRI manipulations. This work was supported by grants from the Fonds de la Recherche Scientifique FRS-FNRS, the Foundation Saint-Luc and the Belgian National Foundation for Research in Pediatric Cardiology.

Conflict of Interest

No potential conflicts of interest were disclosed.

Animal Studies

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees. No human studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laetitia Vanhoutte.

Additional information

Editor-in-Chief Jennifer L. Hall oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanhoutte, L., Gallez, B., Feron, O. et al. Variability of Mouse Left Ventricular Function Assessment by 11.7 Tesla MRI. J. of Cardiovasc. Trans. Res. 8, 362–371 (2015). https://doi.org/10.1007/s12265-015-9638-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-015-9638-0

Keywords

Navigation