Skip to main content
Log in

Current status of cardiac MRI in small animals

  • Review
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Cardiac magnetic resonance imaging (MRI) on small animals is possible but remains challenging and not well standardized. This publication aims to provide an overview of the current techniques, applications and challenges of cardiac MRI in small animals for researchers interested in moving into this field. Solutions have been developed to obtain a reliable cardiac trigger in both the rat and the mouse. Techniques to measure ventricular function and mass have been well validated and are used by several research groups. More advanced techniques like perfusion imaging, delayed enhancement or tag imaging are emerging. Regarding cardiac applications, not only coronary ischemic disease but several other pathologies or conditions including cardiopathies in transgenic animals have already benefited from these new developments. Therefore, cardiac MRI has a bright future for research in small animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoit BD (2001) New approaches to phenotypic analysis in adult mice. J Mol Cell Cardiol 33:27–35

    Google Scholar 

  2. Nahrendorf M, Hiller KH, Greiser A, Kohler S, Neuberger T, Hu K, Waller C et al (2003) Chronic coronary artery stenosis induces impaired function of remote myocardium: MRI and spectroscopy study in rat. Am J Physiol Heart Circ Physiol 285:H2712–2721

    Google Scholar 

  3. Wiesmann F, Neubauer S, Haase A, Hein L (2001) Can we use vertical bore magnetic resonance scanners for murine cardiovascular phenotype characterization? Influence of upright body position on left ventricular hemodynamics in mice. J Cardiovasc Magn Reson 3:311–315

    Article  CAS  PubMed  Google Scholar 

  4. Franco F, Thomas GD, Giroir B, Bryant D, Bullock MC, Chwialkowski MC, Victor RG et al. (1999) Magnetic resonance imaging and invasive evaluation of development of heart failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation 99:448–454

    Google Scholar 

  5. Shohet RV, Kisanuki YY, Zhao XS, Siddiquee Z, Franco F, Yanagisawa M (2004) Mice with cardiomyocyte-specific disruption of the endothelin-1 gene are resistant to hyperthyroid cardiac hypertrophy. Proc Natl Acad Sci USA 101:2088–2093

    Google Scholar 

  6. Rudin M, Allegrini PR, Beckmann N, Ekatodramis D, Laurent D (2000) In-vivo cardiac studies in animals using magnetic resonance techniques: experimental aspects and MR readouts. MAGMA 11:33–35

    Article  CAS  PubMed  Google Scholar 

  7. Cassidy PJ, Schneider JE, Grieve SM, Lygate C, Neubauer S, Clarke K (2004) Assessment of motion gating strategies for mouse magnetic resonance at high magnetic fields. J Magn Reson Imaging 19:229–237

    Article  PubMed  Google Scholar 

  8. Brau AC, Wheeler CT, Hedlund LW, Johnson GA (2002) Fiber-optic stethoscope: a cardiac monitoring and gating system for magnetic resonance microscopy. Magn Reson Med 47:314–321

    Google Scholar 

  9. Fishbein KW, McConville P, Spencer RG (2001) The lever-coil: a simple, inexpensive sensor for respiratory and cardiac motion in MRI experiments. Magn Reson Imaging 19:881–889

    Google Scholar 

  10. Rehwald WG, Reeder SB, McVeigh ER, Judd RM (1997) Techniques for high-speed cardiac magnetic resonance imaging in rats and rabbits. Magn Reson Med 37:124–130

    Google Scholar 

  11. Schneider JE, Cassidy PJ, Lygate C, Tyler DJ, Wiesmann F, Grieve SM, Hulbert K et al. (2003) Fast, high-resolution in vivo cine magnetic resonance imaging in normal and failing mouse hearts on a vertical 11.7 T system. J Magn Reson Imaging 18:691–701

    Article  PubMed  Google Scholar 

  12. Wood AK, Klide AM, Pickup S, Kundel HL (2001) Prolonged general anesthesia in MR studies of rats. Acad Radiol 8:1136–1140

    Google Scholar 

  13. Qiu HH, Cofer GP, Hedlund LW, Johnson GA (1997) Automated feedback control of body temperature for small animal studies with MR microscopy. IEEE Trans Biomed Eng 44:1107–1113

    Google Scholar 

  14. Nahrendorf M, Wiesmann F, Hiller KH, Hu K, Waller C, Ruff J, Lanz TE et al. (2001) Serial cine-magnetic resonance imaging of left ventricular remodeling after myocardial infarction in rats. J Magn Reson Imaging 14:547–555

    Article  CAS  PubMed  Google Scholar 

  15. Ruff J, Wiesmann F, Hiller KH, Voll S, von Kienlin M, Bauer WR, Rommel E et al. (1998) Magnetic resonance microimaging for noninvasive quantification of myocardial function and mass in the mouse. Magn Reson Med 40:43–48

    CAS  PubMed  Google Scholar 

  16. Siri FM, Jelicks LA, Leinwand LA, Gardin JM (1997) Gated magnetic resonance imaging of normal and hypertrophied murine hearts. Am J Physiol 272:H2394–2402

    Google Scholar 

  17. Slawson SE, Roman BB, Williams DS, Koretsky AP (1998) Cardiac MRI of the normal and hypertrophied mouse heart. Magn Reson Med 39:980–987

    Google Scholar 

  18. Kohler S, Hiller KH, Griswold M, Bauer WR, Haase A, Jakob PM (2003) NMR-microscopy with TrueFISP at 11.75 T. J Magn Reson 161:252–257

    Google Scholar 

  19. Kohler S, Hiller KH, Waller C, Bauer WR, Haase A, Jakob PM (2003) Investigation of the microstructure of the isolated rat heart: a comparison between T*2- and diffusion-weighted MRI. Magn Reson Med 50:1144–1150

    Google Scholar 

  20. Kohler S, Hiller KH, Waller C, Jakob PM, Bauer WR, Haase A (2003) Visualization of myocardial microstructure using high-resolution T*2 imaging at high magnetic field. Magn Reson Med 49:371–375

    Google Scholar 

  21. Chen J, Song SK, Liu W, McLean M, Allen JS, Tan J, Wickline SA et al. (2003) Remodeling of cardiac fiber structure after infarction in rats quantified with diffusion tensor MRI. Am J Physiol Heart Circ Physiol 285:H946–954

    Google Scholar 

  22. Ross AJ, Yang Z, Berr SS, Gilson WD, Petersen WC, Oshinski JN, French BA (2002) Serial MRI evaluation of cardiac structure and function in mice after reperfused myocardial infarction. Magn Reson Med 47:1158–1168

    Article  PubMed  Google Scholar 

  23. Williams SP, Gerber HP, Giordano FJ, Peale FV, Jr., Bernstein LJ, Bunting S, Chien KR et al. (2001) Dobutamine stress cine-MRI of cardiac function in the hearts of adult cardiomyocyte-specific VEGF knockout mice. J Magn Reson Imaging 14:374–382

    Google Scholar 

  24. Wiesmann F, Ruff J, Engelhardt S, Hein L, Dienesch C, Leupold A, Illinger R et al. (2001) Dobutamine-stress magnetic resonance microimaging in mice: acute changes of cardiac geometry and function in normal and failing murine hearts. Circ Res 88:563–569

    CAS  PubMed  Google Scholar 

  25. Hu TC, Pautler RG, MacGowan GA, Koretsky AP (2001) Manganese-enhanced MRI of mouse heart during changes in inotropy. Magn Reson Med 46:884–890

    Google Scholar 

  26. Henson RE, Song SK, Pastorek JS, Ackerman JJ, Lorenz CH (2000) Left ventricular torsion is equal in mice and humans. Am J Physiol Heart Circ Physiol 278:H1117–H1123

    Google Scholar 

  27. Wu EX, Towe CW, Tang H (2002) MRI cardiac tagging using a sinc-modulated RF pulse train. Magn Reson Med 48:389–393

    Google Scholar 

  28. Zhou R, Pickup S, Glickson JD, Scott CH, Ferrari VA (2003) Assessment of global and regional myocardial function in the mouse using cine and tagged MRI. Magn Reson Med 49:760–764

    Article  PubMed  Google Scholar 

  29. Gilson WD, Yang Z, French BA, Epstein FH (2004) Complementary displacement-encoded MRI for contrast-enhanced infarct detection and quantification of myocardial function in mice. Magn Reson Med 51:744–752

    Google Scholar 

  30. Epstein FH, Yang Z, Gilson WD, Berr SS, Kramer CM, French BA (2002) MR tagging early after myocardial infarction in mice demonstrates contractile dysfunction in adjacent and remote regions. Magn Reson Med 48:399–403

    Article  PubMed  Google Scholar 

  31. Streif JU, Herold V, Szimtenings M, Lanz TE, Nahrendorf M, Wiesmann F, Rommel E et al. (2003) In vivo time-resolved quantitative motion mapping of the murine myocardium with phase contrast MRI. Magn Reson Med 49:315–321

    Google Scholar 

  32. Kohler S, Hiller KH, Jakob PM, Bauer WR, Haase A (2003) Time-resolved flow measurement in the isolated rat heart: characterization of left coronary artery stenosis. Magn Reson Med 50:449–452

    Google Scholar 

  33. Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Nat Aca Sci U S A 89:212–216

    Google Scholar 

  34. Kober F, Iltis I, Izquierdo M, Desrois M, Ibarrola D, Cozzone PJ, Bernard M (2004) High-resolution myocardial perfusion mapping in small animals in vivo by spin-labeling gradient-echo imaging. Magn Reson Med 51:62–67

    Article  PubMed  Google Scholar 

  35. Waller C, Kahler E, Hiller KH, Hu K, Nahrendorf M, Voll S, Haase A et al. (2000) Myocardial perfusion and intracapillary blood volume in rats at rest and with coronary dilatation: MR imaging in vivo with use of a spin-labeling technique. Radiology 215:189–197

    Google Scholar 

  36. Belle V, Kahler E, Waller C, Rommel E, Voll S, Hiller KH, Bauer WR et al. (1998) In vivo quantitative mapping of cardiac perfusion in rats using a noninvasive MR spin-labeling method. J Magn Reson Imaging 8:1240–1245

    Google Scholar 

  37. Utting JF, Thomas DL, Gadian DG, Ordidge RJ (2003) Velocity-driven adiabatic fast passage for arterial spin labeling: results from a computer model. Magn Reson Med 49:398–401

    Google Scholar 

  38. Waller C, Hiller KH, Voll S, Haase A, Ertl G, Bauer WR (2001) Myocardial perfusion imaging using a non-contrast agent MR imaging technique. Int J Cardiovasc Imaging 17:123–132

    Google Scholar 

  39. Pickup S, Zhou R, Glickson J (2003) MRI estimation of the arterial input function in mice. Acad Radiol 10:963–968

    Google Scholar 

  40. Kahler E, Waller C, Rommel E, Belle V, Hiller KH, Voll S, Bauer WR et al. (1999) Perfusion-corrected mapping of cardiac regional blood volume in rats in vivo. Magn Reson Med 42:500–506

    Google Scholar 

  41. Wu EX, Tang H, Wong KK, Wang J (2004) Mapping cyclic change of regional myocardial blood volume using steady-state susceptibility effect of iron oxide nanoparticles. J Magn Reson Imaging 19:50–58

    Google Scholar 

  42. Yang Z, Berr SS, Gilson WD, Toufektsian M-C, French BA (2004) Simultaneous evaluation of infarct size and cardiac function in intact mice by contrast-enhanced cardiac magnetic resonance imaging reveals contractile dysfunction in noninfarcted regions early after myocardial infarction. Circulation 109:1161–1167

    Google Scholar 

  43. Krombach GA, Wendland MF, Higgins CB, Saeed M (2002) MR imaging of spatial extent of microvascular injury in reperfused ischemically injured rat myocardium: value of blood pool ultrasmall superparamagnetic particles of iron oxide. Radiology 225:479–486

    Google Scholar 

  44. Saeed M, Lund G, Wendland MF, Bremerich J, Weinmann H, Higgins CB (2001) Magnetic resonance characterization of the peri-infarction zone of reperfused myocardial infarction with necrosis-specific and extracellular nonspecific contrast media. Circulation 103:871–876

    Google Scholar 

  45. Oshinski JN, Yang Z, Jones JR, Mata JF, French BA (2001) Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. Circulation 104:2838–2842

    Google Scholar 

  46. Judd RM, Kim RJ, Oshinski JN, Yang Z, Jones JR, Mata J, French BA (2002) Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging * response. Circulation 106:6e

    Google Scholar 

  47. Bremerich J, Saeed M, Arheden H, Higgins CB, Wendland MF (2000) Normal and infarcted myocardium: differentiation with cellular uptake of manganese at MR imaging in a rat model. Radiology 216:524–530

    Google Scholar 

  48. Wyttenbach R, Saeed M, Wendland MF, Geschwind JF, Bremerich J, Arheden H, Higgins CB (1999) Detection of acute myocardial ischemia using first-pass dynamics of MnDPDP on inversion recovery echoplanar imaging. J Magn Reson Imaging 9:209–214

    Google Scholar 

  49. Chacko VP, Aresta F, Chacko SM, Weiss RG (2000) MRI/MRS assessment of in vivo murine cardiac metabolism, morphology, and function at physiological heart rates. Am J Physiol Heart Circ Physiol 279:H2218–H2224

    CAS  PubMed  Google Scholar 

  50. Naumova AV, Weiss RG, Chacko VP (2003) Regulation of murine myocardial energy metabolism during adrenergic stress studied by in vivo 31P NMR spectroscopy. Am J Physiol Heart Circ Physiol 285:H1976–H1979

    Google Scholar 

  51. Omerovic E, Basetti M, Bollano E, Bohlooly M, Tornell J, Isgaard J, Hjalmarson A et al. (2000) In vivo metabolic imaging of cardiac bioenergetics in transgenic mice. Biochem Biophys Res Commun 271:222–228

    Google Scholar 

  52. Weidensteiner C, Horn M, Fekete E, Neubauer S, von Kienlin M (2002) Imaging of intracellular sodium with shift reagent aided (23)Na CSI in isolated rat hearts. Magn Reson Med 48:89–96

    Google Scholar 

  53. Ruff J, Wiesmann F, Lanz T, Haase A (2000) Magnetic resonance imaging of coronary arteries and heart valves in a living mouse: techniques and preliminary results. J Magn Reson 146:290–296

    CAS  PubMed  Google Scholar 

  54. Manka DR, Gilson W, Sarembock I, Ley K, Berr SS (2000) Noninvasive in vivo magnetic resonance imaging of injury-induced neointima formation in the carotid artery of the apolipoprotein-E null mouse. J Magn Reson Imaging 12:790–794

    Google Scholar 

  55. Choudhury RP, Aguinaldo JG, Rong JX, Kulak JL, Kulak AR, Reis ED, Fallon JT et al. (2002) Atherosclerotic lesions in genetically modified mice quantified in vivo by non-invasive high-resolution magnetic resonance microscopy. Atherosclerosis 162:315–321

    Article  CAS  PubMed  Google Scholar 

  56. Hockings PD, Roberts T, Galloway GJ, Reid DG, Harris DA, Vidgeon-Hart M, Groot PH et al. (2002) Repeated three-dimensional magnetic resonance imaging of atherosclerosis development in innominate arteries of low-density lipoprotein receptor-knockout mice. Circulation 106:1716–1721

    Google Scholar 

  57. Itskovich VV, Choudhury RP, Aguinaldo JG, Fallon JT, Omerhodzic S, Fisher EA, Fayad ZA (2003) Characterization of aortic root atherosclerosis in ApoE knockout mice: high-resolution in vivo and ex vivo MRM with histological correlation. Magn Reson Med 49:381–385

    Article  CAS  PubMed  Google Scholar 

  58. Wiesmann F, Szimtenings M, Frydrychowicz A, Illinger R, Hunecke A, Rommel E, Neubauer S et al. (2003) High-resolution MRI with cardiac and respiratory gating allows for accurate in vivo atherosclerotic plaque visualization in the murine aortic arch. Magn Reson Med 50:69–74

    Article  PubMed  Google Scholar 

  59. Chaabane L, Soulas EC, Contard F, Salah A, Guerrier D, Briguet A, Douek P (2003) High-resolution magnetic resonance imaging at 2 Tesla: potential for atherosclerotic lesions exploration in the apolipoprotein E knockout mouse. Invest Radiol 38:532–538

    Article  PubMed  Google Scholar 

  60. Ahn D, Cheng L, Moon C, Spurgeon H, Lakatta EG, Talan MI (2004) Induction of myocardial infarcts of a predictable size and location by branch pattern probability-assisted coronary ligation in C57BL/6 mice. Am J Physiol Heart Circ Physiol 286:H1201–H1207

    Google Scholar 

  61. Nahrendorf M, Wiesmann F, Hiller KH, Han H, Hu K, Waller C, Ruff J et al. (2000) In vivo assessment of cardiac remodeling after myocardial infarction in rats by cine-magnetic resonance imaging. J Cardiovasc Magn Reson 2:171–180

    CAS  PubMed  Google Scholar 

  62. Waller C, Hiller KH, Kahler E, Hu K, Nahrendorf M, Voll S, Haase A et al. (2001) Serial magnetic resonance imaging of microvascular remodeling in the infarcted rat heart. Circulation 103:1564–1569

    Google Scholar 

  63. Itter G, Jung W, Juretschke P, Schoelkens BA, Linz W (2004) A model of chronic heart failure in spontaneous hypertensive rats (SHR). Lab Anim 38:138–148

    Google Scholar 

  64. Nahrendorf M, Hu K, Fraccarollo D, Hiller KH, Haase A, Bauer WR, Ertl G (2003) Time course of right ventricular remodeling in rats with experimental myocardial infarction. Am J Physiol Heart Circ Physiol 284:H241–H248

    Google Scholar 

  65. Wiesmann F, Frydrychowicz A, Rautenberg J, Illinger R, Rommel E, Haase A, Neubauer S (2002) Analysis of right ventricular function in healthy mice and a murine model of heart failure by in vivo MRI. Am J Physiol Heart Circ Physiol 283:H1065–H1071

    Google Scholar 

  66. Nahrendorf M, Hiller KH, Theisen D, Hu K, Waller C, Kaiser R, Haase A et al. (2002) Effect of transmyocardial laser revascularization on myocardial perfusion and left ventricular remodeling after myocardial infarction in rats. Radiology 225:487–493

    Google Scholar 

  67. Hu K, Gaudron P, Anders HJ, Weidemann F, Turschner O, Nahrendorf M, Ertl G. (1998) Chronic effects of early started angiotensin converting enzyme inhibition and angiotensin AT1-receptor subtype blockade in rats with myocardial infarction: role of bradykinin. Cardiovasc Res 39:401–412

    Google Scholar 

  68. Nahrendorf M, Frantz S, Hu K, von zur Muhlen C, Tomaszewski M, Scheuermann H, Kaiser R et al. (2003) Effect of testosterone on post-myocardial infarction remodeling and function. Cardiovasc Res 57:370–378

    Google Scholar 

  69. Nahrendorf M, Hu K, Hiller KH, Galuppo P, Fraccarollo D, Schweizer G, Haase A et al. (2002) Impact of hydroxymethylglutaryl coenzyme a reductase inhibition on left ventricular remodeling after myocardial infarction: an experimental serial cardiac magnetic resonance imaging study. J Am Coll Cardiol 40:1695–1700

    Google Scholar 

  70. Reffelmann T, Hale SL, Dow JS, Kloner RA (2003) No-reflow phenomenon persists long-term after ischemia/ reperfusion in the rat and predicts infarct expansion. Circulation 108:2911–2917

    Google Scholar 

  71. Lund GK, Higgins CB, Wendland MF, Watzinger N, Weinmann HJ, Saeed M (2001) Assessment of nicorandil therapy in ischemic myocardial injury by using contrast-enhanced and functional MR imaging. Radiology 221:676–682

    Google Scholar 

  72. Watzinger N, Lund GK, Higgins CB, Chujo M, Saeed M (2002) Noninvasive assessment of the effects of nicorandil on left ventricular volumes and function in reperfused myocardial infarction. Cardiovasc Res 54:77–84

    Google Scholar 

  73. Saeed M, Watzinger N, Krombach GA, Lund GK, Wendland MF, Chujo M, Higgins CB (2002) Left ventricular remodeling after infarction: sequential MR imaging with oral nicorandil therapy in rat model. Radiology 224:830–837

    Google Scholar 

  74. Yang Z, Cerniway RJ, Byford AM, Berr SS, French BA, Matherne GP (2002) Cardiac overexpression of A1-adenosine receptor protects intact mice against myocardial infarction. Am J Physiol Heart Circ Physiol 282:H949–H955

    Google Scholar 

  75. Yang Z, Bove CM, French BA, Epstein FH, Berr SS, DiMaria JM, Gibson JJ et al. (2002) Angiotensin II type 2 receptor overexpression preserves left ventricular function after myocardial infarction. Circulation 106:106–111

    Google Scholar 

  76. Li B, Li Q, Wang X, Jana KP, Redaelli G, Kajstura J, Anversa P (1997) Coronary constriction impairs cardiac function and induces myocardial damage and ventricular remodeling in mice. Am J Physiol 273:H2508–H2519

    Google Scholar 

  77. Capasso JM, Jeanty MW, Palackal T, Olivetti G, Anversa P (1989) Ventricular remodeling induced by acute nonocclusive constriction of coronary artery in rats. Am J Physiol Heart Circ Physiol 257:H1983–H1993

    Google Scholar 

  78. Waller C, Hiller K-H, Albrecht M, Hu K, Nahrendorf M, Gattenlohner S, Haase A et al. (2003) Microvascular adaptation to coronary stenosis in the rat heart in vivo: a serial magnetic resonance imaging study. Microvasc Res 66:173–182

    Google Scholar 

  79. Schlieper G, Kim JH, Molojavyi A, Jacoby C, Laussmann T, Flogel U, Godecke A et al. (2004) Adaptation of the myoglobin knockout mouse to hypoxic stress. Am J Physiol Regul Integr Comp Physiol 286:R786–R792

    Google Scholar 

  80. Braun A, Trigatti BL, Post MJ, Sato K, Simons M, Edelberg JM, Rosenberg RD et al. (2002) Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E-deficient mice. Circ Res 90:270–276

    Google Scholar 

  81. Woodman SE, Park DS, Cohen AW, Cheung MW, Chandra M, Shirani J, Tang B et al. (2002) Caveolin-3 knock-out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade. J Biol Chem 277:38988–38997

    Google Scholar 

  82. Parzy E, Fromes Y, Wary C, Vignaux O, Giacomini E, Leroy-Willig A, Carlier PG (2003) Ultrafast multiplanar determination of left ventricular hypertrophy in spontaneously hypertensive rats with single-shot spin-echo nuclear magnetic resonance imaging. J Hypertens 21:429–436

    Google Scholar 

  83. Zou Y, Yamazaki T, Nakagawa K, Yamada H, Iriguchi N, Toko H, Takano H et al. (2002) Continuous blockade of L-type Ca2+ channels suppresses activation of calcineurin and development of cardiac hypertrophy in spontaneously hypertensive rats. Hypertens Res 25:117–124

    Google Scholar 

  84. Al-Shafei AI, Wise RG, Gresham GA, Bronns G, Carpenter TA, Hall LD, Huang CL (2002) Non-invasive magnetic resonance imaging assessment of myocardial changes and the effects of angiotensin-converting enzyme inhibition in diabetic rats. J Physiol 538:541–553

    Google Scholar 

  85. Al-Shafei AI, Wise RG, Gresham GA, Carpenter TA, Hall LD, Huang CL (2002) Magnetic resonance imaging analysis of cardiac cycle events in diabetic rats: the effect of angiotensin-converting enzyme inhibition. J Physiol 538:555–572

    Google Scholar 

  86. Johansson L, Johnsson C, Penno E, Bjornerud A, Ahlstrom H (2002) Acute cardiac transplant rejection: detection and grading with MR imaging with a blood pool contrast agent-experimental study in the rat. Radiology 225:97–103

    Google Scholar 

  87. Kanno S, Wu YJ, Lee PC, Dodd SJ, Williams M, Griffith BP, Ho C (2001) Macrophage accumulation associated with rat cardiac allograft rejection detected by magnetic resonance imaging with ultrasmall superparamagnetic iron oxide particles. Circulation 104:934–938

    Google Scholar 

  88. Jelicks LA, Chandra M, Shtutin V, Petkova SB, Tang B, Christ GJ, Factor SM et al. (2002) Phosphoramidon treatment improves the consequences of chagasic heart disease in mice. Clin Sci (Lond) 103 Suppl 48:267S–271S

    Google Scholar 

  89. Jelicks LA, Chandra M, Shirani J, Shtutin V, Tang B, Christ GJ, Factor SM et al. (2002) Cardioprotective effects of phosphoramidon on myocardial structure and function in murine Chagas’ disease. Int J Parasitol 32:1497–1506

    Google Scholar 

  90. Huang H, Yanagisawa M, Kisanuki YY, Jelicks LA, Chandra M, Factor SM, Wittner M et al. (2002) Role of cardiac myocyte-derived endothelin-1 in chagasic cardiomyopathy: molecular genetic evidence. Clin Sci (Lond) 103(Suppl 48):263S–266S

    Google Scholar 

  91. Huang H, Chan J, Wittner M, Jelicks LA, Morris SA, Factor SM, Weiss LM et al. (1999) Expression of cardiac cytokines and inducible form of nitric oxide synthase (NOS2) in Trypanosoma cruzi-infected mice. J Mol Cell Cardiol 31:75–88

    Google Scholar 

Download references

Acknowledgments.

Swiss National Science Foundation (PPOOB-68778 and NRP-4046-058712) and the Radiology and Medical Informatics Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-P. Vallée.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vallée, JP., Ivancevic, M., Nguyen, D. et al. Current status of cardiac MRI in small animals. MAGMA 17, 149–156 (2004). https://doi.org/10.1007/s10334-004-0066-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-004-0066-4

Keywords

Navigation