Skip to main content

Advertisement

Log in

Emerging MRI Methods in Translational Cardiovascular Research

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cardiac magnetic resonance imaging (CMR) has become a reference standard modality for imaging of left ventricular (LV) structure and function and, using late gadolinium enhancement, for imaging myocardial infarction. Emerging CMR techniques enable a more comprehensive examination of the heart, making CMR an excellent tool for use in translational cardiovascular research. Specifically, emerging CMR methods have been developed to measure the extent of myocardial edema, changes in ventricular mechanics, changes in tissue composition as a result of fibrosis, and changes in myocardial perfusion as a function of both disease and infarct healing. New CMR techniques also enable the tracking of labeled cells, molecular imaging of biomarkers of disease, and changes in calcium flux in cardiomyocytes. In addition, MRI can quantify blood flow velocity and wall shear stress in large blood vessels. Almost all of these techniques can be applied in both pre-clinical and clinical settings, enabling both the techniques themselves and the knowledge gained using such techniques in pre-clinical research to be translated from the lab bench to the patient bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bui, A., Horwich, T., & Fonarow, G. (2011). Epidemiology and risk profile of heart failure. Nature Reviews Cardiology, 8(1), 30–41.

    Article  PubMed  Google Scholar 

  2. Kearns-Jonker, M., & Dai, W. K. R. A. (2010). Stem cells for the treatment of heart failure. Current Opinion in Molecular Therapeutics, 12(4), 432–441.

    PubMed  CAS  Google Scholar 

  3. Boyle, A., McNiece, I., & Hare, J. (2010). Mesenchymal stem cell therapy for cardiac repair. Methods in Molecular Biology, 660, 65–84.

    Article  PubMed  CAS  Google Scholar 

  4. Gepstein, L. (2010). Cell and gene therapy strategies for the treatment of postmyocardial infarction ventricular arrhythmias. Annals of the New York Academy of Sciences, 1188, 32–38.

    Article  PubMed  Google Scholar 

  5. Ruvinov, E., Leor, J., & Cohen, S. (2011). The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials, 32(2), 565–578.

    Article  PubMed  CAS  Google Scholar 

  6. Frost, R., & van Rooij, E. (2010). miRNAs as therapeutic targets in ischemic heart disease. Journal of Cardiovascular Translational Research, 3(3), 280–289.

    Article  PubMed  Google Scholar 

  7. Dobrucki, L., & Sinusas, A. (2010). PET and SPECT in cardiovascular molecular imaging. Nature Reviews Cardiology, 7(1), 38–47.

    Article  PubMed  Google Scholar 

  8. Pennell, D. J. (2010). Cardiovascular magnetic resonance. Circulation, 121(5), 692–705.

    Article  PubMed  Google Scholar 

  9. Salerno, M., & Kramer, C. (2009). Advances in cardiovascular MRI for diagnostics: Applications in coronary artery disease and cardiomyopathies. Expert Opinion on Medical Diagnostics, 3(6), 673–687.

    Article  PubMed  Google Scholar 

  10. Epstein, F. H. (2007). MR in mouse models of cardiac disease. NMR in Biomedicine, 20(3), 238–255.

    Article  PubMed  Google Scholar 

  11. Kramer, C., Rogers, W. J., Mankad, S., Theobald, T., Pakstis, D., & Hu, Y. (2000). Contractile reserve and contrast uptake pattern by magnetic resonance imaging and functional recovery after reperfused myocardial infarction. Journal of the American College of Cardiology, 36(6), 1835–1840.

    Article  PubMed  CAS  Google Scholar 

  12. Rogers, W. J., Kramer, C., Geskin, G., Hu, Y., Theobald, T., Vido, D., et al. (1999). Early contrast-enhanced MRI predicts late functional recovery after reperfused myocardial infarction. Circulation, 99(6), 744–750.

    PubMed  Google Scholar 

  13. Maron, M. (2009). The current and emerging role of cardiovascular magnetic resonance imaging in hypertrophic cardiomyopathy. Journal of Cardiovascular Translational Research, 2(4), 415–425.

    Article  PubMed  Google Scholar 

  14. Epstein, F. H. (2007). MRI of left ventricular function. Journal of Nuclear Cardiology, 14(5), 729–744.

    Article  PubMed  Google Scholar 

  15. Wu, K., Weiss, R., Thiemann, D., Kitagawa, K., Schmidt, A., Dalal, D., et al. (2008). Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. Journal of the American College of Cardiology, 51(25), 2414–2421.

    Article  PubMed  Google Scholar 

  16. Power, T., Kramer, C., Shaffer, A., Theobald, T., Petruolo, S., Reichek, N., et al. (1997). Breath-hold dobutamine magnetic resonance myocardial tagging: Normal left ventricular response. The American Journal of Cardiology, 80(9), 1203–1207.

    Article  PubMed  CAS  Google Scholar 

  17. Epstein, F. H., Yang, Z., Gilson, W. D., Berr, S. S., Kramer, C. M., & French, B. A. (2002). MR tagging early after myocardial infarction in mice demonstrates contractile dysfunction in adjacent and remote regions. Magnetic Resonance in Medicine, 48(2), 399–403.

    Article  PubMed  Google Scholar 

  18. Kim, D., Gilson, W. D., Kramer, C. M., & Epstein, F. H. (2004). Myocardial tissue tracking with two-dimensional cine displacement-encoded MR imaging: Development and initial evaluation. Radiology, 230, 862–871.

    Article  PubMed  Google Scholar 

  19. Gilson, W. D., Yang, Z., French, B., & Epstein, F. (2004). Complementary displacement-encoded MRI for contrast-enhanced infarct detection and quantification of myocardial function in mice. Magnetic Resonance in Medicine, 51(4), 744–752.

    Article  PubMed  Google Scholar 

  20. Gilson, W., Yang, Z., French, B., & Epstein, F. (2005). Measurement of myocardial mechanics in mice before and after infarction using multislice displacement-encoded MRI with 3D motion encoding. American Journal of Physiology. Heart and Circulatory Physiology, 288, H1491–H1497.

    Article  PubMed  CAS  Google Scholar 

  21. Gilson, W. D., Epstein, F. H., Yang, Z., Xu, Y., Prasad, K.-M. R., Toufektsian, M.-C., et al. (2007). Borderzone contractile dysfunction is transiently attenuated and left ventricular structural remodeling is markedly reduced following reperfused myocardial infarction in inducible nitric oxide synthase knockout mice. Journal of the American College of Cardiology, 50(18), 1799–1807.

    Article  PubMed  CAS  Google Scholar 

  22. Zhong, X., Spottiswoode, B., Cowart, E., Gilson, W., & Epstein, F. H. (2006). Selective suppression of artifact-generating echoes in cine DENSE using through-plane dephasing. Magnetic Resonance in Medicine, 56(5), 1126–1131.

    Article  PubMed  Google Scholar 

  23. Zhong, X., Helm, P., & Epstein, F. (2009). Balanced multipoint displacement encoding for DENSE MRI. Magnetic Resonance in Medicine, 61(4), 981–988.

    Article  PubMed  Google Scholar 

  24. Zhong, X., Spottiswoode, B., Meyer, C., Kramer, C., & Epstein, F. H. (2010). Imaging three-dimensional myocardial mechanics using navigator-gated volumetric spiral cine DENSE MRI. Magnetic Resonance in Medicine, 64(4), 1089–1097.

    Article  PubMed  Google Scholar 

  25. Helm, P., Tseng, H., Younes, L., McVeigh, E., & Winslow, R. (2005). Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure. Magnetic Resonance in Medicine, 54(4), 850–859.

    Article  PubMed  Google Scholar 

  26. Sosnovik, D., Wang, R., Dai, G., Wang, T., Aikawa, E., Novikov, M., et al. (2009). Diffusion spectrum MRI tractography reveals the presence of a complex network of residual myofibers in infarcted myocardium. Circulation Cardiovascular Imaging, 2, 206–212.

    Article  PubMed  Google Scholar 

  27. Vandsburger, M. H., French, B. A., Helm, P. A., Roy, R. J., Kramer, C. M., Young, A. A., et al. (2007). Multi-parameter in vivo cardiac magnetic resonance imaging demonstrates normal perfusion reserve despite severely attenuated β-adrenergic functional response in neuronal nitric oxide synthase knockout mice. European Heart Journal, 28(22), 2792–2798.

    Article  PubMed  CAS  Google Scholar 

  28. Kramer, C., Rogers, W., Theobald, T., Power, T., Geskin, G., & Reichek, N. (1997). Dissociation between changes in intramyocardial function and left ventricular volumes in the eight weeks after first anterior myocardial infarction. Journal of the American College of Cardiology, 30(7), 1625–1632.

    Article  PubMed  CAS  Google Scholar 

  29. Young, A., French, B., Yang, Z., Cowan, B., Gilson, W., Berr, S., et al. (2006). Reperfused myocardial infarction in mice: 3D mapping of late gadolinium enhancement and strain. Journal of Cardiovascular Magnetic Resonance, 8(5), 685–692.

    Article  PubMed  Google Scholar 

  30. Hankiewicz, J., Goldspink, P., Buttrick, P., & Lewandowski, E. (2008). Principal strain changes precede ventricular wall thinning during transition to heart failure in a mouse model of dilated cardiomyopathy. American Journal of Physiology. Heart and Circulatory Physiology, 204(1), H330–H336.

    Google Scholar 

  31. Gerber, B., Darchis, J., le Polain de Waroux, J., Legros, G., Pouleur, A., Vancraeynest, D., et al. (2010). Relationship between transmural extent of necrosis and quantitative recovery of regional strains after revascularization. Journal of the American College of Cardiology Cardiovascular Imaging, 3(7), 720–730.

    PubMed  Google Scholar 

  32. Bove, C. M., Gilson, W., Scott, C., Epstein, F., Yang, Z., DiMaria, J. M., et al. (2005). The angiotensin II type 2 receptor and improved adjacent region function post-MI. Journal of Magnetic Resonance Imaging, 7, 459–464.

    Google Scholar 

  33. Amado, L., Schuleri, K., Saliaris, A., Boyle, A., Helm, R., Oskouei, B., et al. (2006). Multimodality noninvasive imaging demonstrates in vivo cardiac regeneration after mesenchymal stem cell therapy. Journal of the American College of Cardiology, 48(10), 2116–2124.

    Article  PubMed  Google Scholar 

  34. Schuleri, K., Feigenbaum, G., Centola, M., Weiss, E., Zimmet, J., Turney, J., et al. (2009). Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. European Heart Journal, 30(22), 2722–2732.

    Article  PubMed  Google Scholar 

  35. Kramer, C., Rogers, W., Theobald, T., Power, T., Petruolo, S., & Reichek, N. (1996). Remote noninfarcted region dysfunction soon after first anterior myocardial infarction. A magnetic resonance tagging study. Circulation, 94(4), 660–666.

    PubMed  CAS  Google Scholar 

  36. Liu, W., Ashford, M., Chen, J., Watkins, M., Williams, T., Wickline, S., et al. (2006). MR tagging demonstrates quantitative differences in regional ventricular wall motion in mice, rats, and men. American Journal of Physiology. Heart and Circulatory Physiology, 291(5), H2515–H2521.

    Article  PubMed  CAS  Google Scholar 

  37. Epstein, F. H., & Gilson, W. D. (2004). Displacement-encoded cardiac MRI using cosine and sine modulation to eliminate (CANSEL) artifact-generating echoes. Magnetic Resonance in Medicine, 52(4), 774–781.

    Article  PubMed  Google Scholar 

  38. Spottiswoode, B., Zhong, X., Lorenz, C., Mayosi, B., Meintjes, E., & Epstein, F. (2008). 3D myocardial tissue tracking with slice followed cine DENSE MRI. Journal of Magnetic Resonance Imaging, 27(5), 1019–1027.

    Article  PubMed  Google Scholar 

  39. Paulus, W. (2010). Novel strategies in diastolic heart failure. Heart, 96(14), 1147–1153.

    Article  PubMed  Google Scholar 

  40. Daneshvar, D., Wei, J., Tolstrup, K., Thomson, L., Shufelt, C., & Merz, C. (2010). Diastolic dysfunction: Improved understanding using emerging imaging techniques. American Heart Journal, 160(3), 394–404.

    Article  PubMed  Google Scholar 

  41. Wagner, A., Mahrholdt, H., Thomson, L., Hager, S., Meinhardt, G., Rehwald, W., et al. (2006). Effects of time, dose, and inversion time for acute myocardial infarct size measurements based on magnetic resonance imaging-delayed contrast enhancement. Journal of the American College of Cardiology, 47(10), 2027–2033.

    Article  PubMed  Google Scholar 

  42. Vandsburger, M., Janiczek, R., Xu, Y., French, B., Meyer, C., Kramer, C., et al. (2010). Improved arterial spin labeling after myocardial infarction in mice using cardaic and respiratory gated Look–Locker imaging with fuzzy C-means clustering. Magnetic Resonance in Medicine, 63(3), 648–657.

    Article  PubMed  Google Scholar 

  43. Iles, L., Pfluger, H., Phrommintikul, A., Cherayath, J., Aksit, P., Gupta, S., et al. (2008). Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. Journal of the American College of Cardiology, 52(19), 1574–1580.

    Article  PubMed  Google Scholar 

  44. Babu-Narayan, S., Kilner, P., Li, W., Moon, J., Goktekin, O., Davlouros, P., et al. (2006). Ventricular fibrosis suggested by cardiovascular magnetic resonance in adults with repaired tetralogy of fallot and its relationship to adverse markers of clinical outcome. Circulation, 113(3), 405–413.

    Article  PubMed  CAS  Google Scholar 

  45. Kehr, E., Sono, M., Chugh, S., & Jerosch-Herold, M. (2008). Gadolinium-enhanced magnetic resonance imaging for detection and quantification of fibrosis in human myocardium in vitro. The International Journal of Cardiovascular Imaging, 24(1), 61–68.

    Article  PubMed  Google Scholar 

  46. Gai, N., Turkbey, E., Nazarian, S., van der Geest, R., Liu, C., Lima, J., et al. (2010). T(1) mapping of the gadolinium-enhanced myocardium: Adjustment for factors affecting interpatient comparison. Magnetic Resonance in Medicine. doi:10.1002/mrm.22716.

    Google Scholar 

  47. Broberg, C., Chugh, S., Conklin, C., Sahn, D., & Jerosch-Herold, M. (2010). Quantification of diffuse myocardial fibrosis and its association with myocardial dysfunction in congenital heart disease. Circulation Cardiovascular Imaging, 3(6), 727–734.

    Article  PubMed  Google Scholar 

  48. Flacke, S., Fischer, S., & Lorenz, C. (2001). Measurement of the gadopentetate dimeglumine partition coefficient in human myocardium in vivo: Normal distribution and elevation in acute and chronic infarction. Radiology, 218, 703–710.

    PubMed  CAS  Google Scholar 

  49. Raman, S., Simonetti, O., Winner, M., Dickerson, J., He, X., Mazzaferri, E., et al. (2010). Cardiac magnetic resonance with edema imaging identifies myocardium at risk and predicts worse outcome in patients with non-ST-segment elevation acute coronary syndrome. Journal of the American College of Cardiology, 55(22), 2480–2488.

    Article  PubMed  Google Scholar 

  50. West, A., & Kramer, C. (2010). Cardiovascular magnetic resonance imaging of myocardial infarction, viability, and cardiomyopathies. Current Problems in Cardiology, 35(4), 176–220.

    Article  PubMed  Google Scholar 

  51. Berry, C., Kellman, P., Mancini, C., Chen, M., Bandettini, W., Lowrey, T., et al. (2010). Magnetic resonance imaging delineates the ischemic area at risk and myocardial salvage in patients with acute myocardial infarction. Circulation Cardiovascular Imaging, 3(5), 527–535.

    Article  PubMed  Google Scholar 

  52. Tilak, G., Hsu, L., Hoyt, R., & Arai, A. (2008). In vivo T2-weighted magnetic resonance imaging can accurately determine the ischemic area at risk for 2-day-old nonreperfused myocardial infarction. Investigative Radiology, 43, 7–15.

    Article  PubMed  Google Scholar 

  53. Aletras, A., Tilak, G., Natanzon, A., Hsu, L., Gonzalez, F., Hoyt, R., et al. (2006). Retrospective determination of the area at risk for reperfused acute myocardial infarction with T2-weighted cardiac magnetic resonance imaging: Histopathological and displacement encoding with stimulated echoes (DENSE) functional validations. Circulation, 113, 1865–1870.

    Article  PubMed  Google Scholar 

  54. Patel, A., Epstein, F., & Kramer, C. (2008). Evaluation of the microcirculation: Advances in cardiac magnetic resonance perfusion imaging. Journal of Nuclear Cardiology, 15(5), 698–708.

    Article  PubMed  Google Scholar 

  55. Gerber, B., Raman, S., Nayak, K., Epstein, F. H., Ferreira, P., Axel, L., et al. (2008). Myocardial first-pass perfusion cardiovascular magnetic resonance: history, theory, and current state of the art. Journal of Cardiovascular Magnetic Resonance, 10(18).

  56. Jerosch-Herold, M. (2010). Quantification of myocardial perfusion by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 12, 57-.

    Article  PubMed  Google Scholar 

  57. Atkinson, D., Burstein, D., & Edelman, R. (1990). First-pass cardiac perfusion: Evaluation with ultrafast MR imaging. Radiology, 173(3–1), 757–762.

    Google Scholar 

  58. Patel, A., Antkowiak, P., Nadalur, K., West, A., Salerno, M., Arora, V., et al. (2010). Assessment of advanced coronary artery disease: Advantages of quantitative cardiac magnetic resonance perfusion analysis. Journal of the American College of Cardiology, 56(7), 561–569.

    Article  PubMed  Google Scholar 

  59. Antkowiak, P., Janiczek, R., Gibberman, L., Xu, C., Kramer, C., Meyer, C., et al. (2010). Quantitative first-pass perfusion MRI of the mouse heart. Journal of Cardiovascular Magnetic Resonance, 12(1), M10.

    Article  Google Scholar 

  60. Makowski, M., Jansen, C., Webb, I., Chiribiri, A., Nagel, E., Botnar, R., et al. (2010). First-pass contrast-enhanced myocardial perfusion MRI in mice on a 3-T clinical MR scanner. Magnetic Resonance in Medicine, 64(6), 1592–1598.

    Article  PubMed  Google Scholar 

  61. Coolen, B., Moonen, R., Paulis, L., Geelen, T., Nicolay, K., & Strijkers, G. (2010). Mouse myocardial first-pass perfusion MR imaging. Magnetic Resonance in Medicine, 64(6), 1658–1663.

    Article  PubMed  Google Scholar 

  62. Christian, T., Rettmann, D., Aletras, A., Liao, S., Taylor, J., Balaban, R., et al. (2004). Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology, 232(3), 677–684.

    Article  PubMed  Google Scholar 

  63. Gatehouse, P., Elkington, A., Ablitt, N., Yang, G., Pennell, D., & Firmin, D. (2004). Accurate assessment of the arterial input function during high-dose myocardial perfusion cardiovascular magnetic resonance. Journal of Magnetic Resonance Imaging, 20(1), 39–45.

    Article  PubMed  Google Scholar 

  64. Otazo, R., Kim, D., Axel, L., & Sodickson, D. (2010). Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magnetic Resonance in Medicine, 64(3), 767–776.

    Article  PubMed  Google Scholar 

  65. Goldstein, T., Jerosch-Herold, M., Misselwitz, B., Zhang, H., Gropler, R., & Zheng, J. (2008). Fast mapping of myocardial blood flow with MR first-pass perfusion imaging. Magnetic Resonance in Medicine, 59(6), 1394–1400.

    Article  PubMed  Google Scholar 

  66. Fidler, F., Wacker, C., Dueren, C., Weigel, M., Jakob, P., & Bauer, W. A. H. (2004). Myocardial perfusion measurements by spin-labeling under different vasodynamic states. Journal of Cardiovascular Magnetic Resonance, 6(2), 509–516.

    Article  PubMed  Google Scholar 

  67. Northrup, B. E., McCommis, K. S., Zhang H., Ray, S., Woodard, P. K., Groplet, R.J., et al. (2008). Resting myocardial perfusion quantification with CMR arterial spin labeling at 1.5T 3.0T. Journal of Cardiovascular Magnetic Resonance, 10(53).

  68. Poncelet, B. P., Koelling, T. M., Schmidt, C. J., Kwong, K. K., Reese, T. G., Ledden, P., et al. (1999). Measurement of human myocardial perfusion by double-gated flow alternating inversion recovery EPI. Magnetic Resonance in Medicine, 41(3), 510–519.

    Article  PubMed  CAS  Google Scholar 

  69. Wacker, C. M., Fidler, F., Dueren, C., Hirn, S., Jakob, P. M., Ertl, G., et al. (2003). Quantitative assessment of myocardial perfusion with a spin-labeling technique: Preliminary results in patients with coronary artery disease. Journal of Magnetic Resonance Imaging, 18(5), 555–560.

    Article  PubMed  Google Scholar 

  70. Zun, Z., Wong, E., & Nayak, K. (2009). Assessment of myocardial blood flow (MBR) in humans using aterial spin labeling (ASL): Feasibility and noise analysis. Magnetic Resonance in Medicine, 62(4), 975–983.

    Article  PubMed  Google Scholar 

  71. Streif, J. U. G., Nahrendorf, M., Hiller, K.-H., Waller, C., Wiesmann, F., Rommel, E., et al. (2005). In vivo assessment of absolute perfusion and intracapillary blood volume in the murine myocardium by spin labeling magnetic resonance imaging. Magnetic Resonance in Medicine, 53(3), 584–592.

    Article  PubMed  Google Scholar 

  72. Kober, F., Iltis, I., Cozzone, P. J., & Bernard, M. (2005). Myocardial blood flow mapping in mice using high-resolution spin labeling magnetic resonance imaging: Influence of ketamine/xylazine and isoflurane anesthesia. Magnetic Resonance in Medicine, 53(3), 601–606.

    Article  PubMed  Google Scholar 

  73. Nahrendorf, M., Streif, J. U., Hiller, K.-H., Hu, K., Nordbeck, P., Ritter, O., et al. (2006). Multimodal functional cardiac MRI in creatine kinase-deficient mice reveals subtle abnormalities in myocardial perfusion and mechanics. American Journal of Physiology. Heart and Circulatory Physiology, 290(6), H2516–H2521.

    Article  PubMed  CAS  Google Scholar 

  74. Kober, F., Iltis, I., Izquierdo, M., Desrois, M., Ibarrola, D., Cozzone, P. J., et al. (2004). High-resolution myocardial perfusion mapping in small animals in vivo by spin-labeling gradient-echo imaging. Magnetic Resonance in Medicine, 51(1), 62–67.

    Article  PubMed  Google Scholar 

  75. Waller, C., Engelhorn, T., Hiller, K.-H., Heusch, G., Ertl, G., Bauer, W. R., et al. (2005). Impaired resting perfusion in viable myocardium distal to chronic coronary stenosis in rats. American Journal of Physiology. Heart and Circulatory Physiology, 288(6), H2588–H2593.

    Article  PubMed  CAS  Google Scholar 

  76. Waller, C., Hiller, K.-H., Kahler, E., Hu, K., Nahrendorf, M., Voll, S., et al. (2001). Serial magnetic resonance imaging of microvascular remodeling in the infarcted rat heart. Circulation, 103(11), 1564–1569.

    PubMed  CAS  Google Scholar 

  77. Waller, C., Hiller, K.-H., Pfaff, D., Gattenlöhner, S., Ertl, G., & Bauer, W. R. (2008). Functional mechanisms of myocardial microcirculation in left ventricular hypertrophy: A hypothetical model of capillary remodeling post myocardial infarction. Microvascular Research, 75(1), 104.

    Article  PubMed  Google Scholar 

  78. Waller, C., Hiller, K.-H., Rudiger, T., Kraus, G., Konietzko, C., Hardt, N., et al. (2005). Noninvasive imaging of angiogenesis inhibition following nitric oxide synthase blockade in the ischemic rat heart in vivo. Microcirculation, 12(4), 339–347.

    Article  PubMed  CAS  Google Scholar 

  79. Waller, C., Kahler, E., Hiller, K.-H., Hu, K., Nahrendorf, M., Voll, S., et al. (2000). Myocardial perfusion and intracapillary blood volume in rats at rest and with coronary dilatation: MR imaging in vivo with use of a spin-labeling technique. Radiology, 215(1), 189–197.

    PubMed  CAS  Google Scholar 

  80. Belle, V., Kahler, E., Waller, C., Rommel, E., Voll, S., Hiller, K., et al. (1998). In vivo quantitative mapping of cardiac perfusion in rats using a noninvasive MR spin-labeling method. Journal of Magnetic Resonance Imaging, 8, 1240–1245.

    Article  PubMed  CAS  Google Scholar 

  81. Iltis, I., Kober, F., Dalmasso, C., Cozzone, P. J., & Bernard, M. (2005). Noninvasive characterization of myocardial blood flow in diabetic, hypertensive, and diabetic and hypertensive rats using spin-labeling MRI. Microcirculation, 12(8), 607–614.

    Article  PubMed  Google Scholar 

  82. Iltis, I., Kober, F., Dalmasso, C., Lan, C., Cozzone, P. J., & Bernard, M. (2005). In vivo assessment of myocardial blood flow in rat heart using magnetic resonance imaging: Effect of anesthesia. Journal of Magnetic Resonance Imaging, 22(2), 242–247.

    Article  PubMed  Google Scholar 

  83. Iltis, I., Kober, F., Desrois, M., Dalmasso, C., Lan, C., Portha, B., et al. (2005). Defective myocardial blood flow and altered function of the left ventricle in type 2 diabetic rats: A noninvasive in vivo study using perfusion and cine magnetic resonance imaging. Investigative Radiology, 40(1), 19–26.

    PubMed  Google Scholar 

  84. Look, D., & Locker, D. (1970). Time saving in measurement of NMR and EPR relaxation times. The Review of Scientific Instruments, 41, 250–251.

    Article  CAS  Google Scholar 

  85. Messroghli, D., Radjenovic, A., Kozerke, S., Higgins, D., Sivananthan, M., & Ridgway, J. (2004). Modified Look–Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magnetic Resonance in Medicine, 52(1), 141–146.

    Article  PubMed  Google Scholar 

  86. Messroghli, D., Walters, K., Plein, S., Sparrow, P., Friedrich, M., Ridgway, J., et al. (2007). Myocardial T1 mapping: Application to patients with acute and chronic myocardial infarction. Magnetic Resonance in Medicine, 58(1), 34–40.

    Article  PubMed  Google Scholar 

  87. Sutton, M. G. S. J., & Sharpe, N. (2000). Left ventricular remodeling after myocardial infarction: Pathophysiology and therapy. Circulation, 101(25), 2981–2988.

    PubMed  CAS  Google Scholar 

  88. Frangogiannis, N. G. (2006). The mechanistic basis of infarct healing. Antioxidants Redox Signaling, 8(11), 1907–1939.

    Article  PubMed  CAS  Google Scholar 

  89. Frangogiannis, N. G. (2008). The immune system and cardiac repair. Pharmacological Research, 58(2), 88.

    Article  PubMed  CAS  Google Scholar 

  90. Kraitchman, D., Kedziorek, D., & Bulte, J. (2011). MR imaging of transplanted stem cells in myocardial infarction. Methods in Molecular Biology, 680, 141–152.

    Article  PubMed  Google Scholar 

  91. Kraitchman, D., & Caravan, P. (2009). Magnetic resonance labeling of stem cells: Is positive tracking a plus or a minus? Journal of the American College of Cardiology Cardiovascular Imaging, 2(9), 1123–1125.

    PubMed  Google Scholar 

  92. Bulte, J., Arbab, A., Douglas, T., & Frank, J. (2004). Preparation of magnetically labeled cells for cell tracking by magnetic resonance imaging. Methods in Enzymology, 386, 275–299.

    Article  PubMed  CAS  Google Scholar 

  93. Adler, E., Bystrup, A., Briley-Saebo, K., Mani, V., Young, W., Giovanonne, S., et al. (2009). In vivo detection of embryonic stem cell-derived cardiovascular progenitor cells using Cy3-labeled gadofluorine M in murine myocardium. Journal of the American College of Cardiology Cardiovascular Imaging, 2(9), 1114–1122.

    PubMed  Google Scholar 

  94. Naresh, N., Vandsburger, M., Klibanov, A., Beyers, R., Antkowiak, P., Xu, Y., et al. (2010). Serial quantitative cellular MRI of macrophage infiltration in the post-infarct heart using T1-mapping and Gd-liposomes. Circulation, 122, A17344.

    Google Scholar 

  95. Bhagavathula, N., Dame, M., Dasilva, M., Jenkins, W. A., Aslam, M., Perone, P., et al. (2010). Fibroblast response to gadolinium: Role for platelet-derived growth factor receptor. Investigative Radiology, 45(12), 769–777.

    Article  CAS  PubMed  Google Scholar 

  96. Yuxiang, Y., & Bogaert, J. (2008). Cell therapy in moycardial infarction: Emphasis on the role of MRI. European Radiology, 18, 548–569.

    Article  Google Scholar 

  97. Shapiro, E., Sharer, K., Skrtic, S., & Koretsky, A. (2006). In vivo detection of single cells by MRI. Magnetic Resonance in Medicine, 55(2), 242.

    Article  PubMed  Google Scholar 

  98. Shapiro, E., Skrtic, S., & Koretsky, A. (2005). Sizing it up: Cellular MRI using micron-sized iron oxide particles. Magnetic Resonance in Medicine, 53(2), 329–338.

    Article  PubMed  Google Scholar 

  99. Qiao, H., Zhang, H., Zheng, Y., Ponde, D., Shen, D., Gao, F., et al. (2009). Embryonic stem cell grafting in normal and infarcted myocardium: Serial assessment with MR imaging and PET dual detection. Radiology, 250(3), 821–829.

    Article  PubMed  Google Scholar 

  100. Carr, C., Stuckey, D., Tatton, L., Tyler, D., Hale, S., Sweeney, D., et al. (2008). Bone marrow-derived stromal cells home to and remain in the infarcted rat heart but fail to improve function: An in vivo cine-MRI study. American Journal of Physiology. Heart and Circulatory Physiology, 295(2), H533–H542.

    Article  PubMed  CAS  Google Scholar 

  101. Sosnovik, D., Nahrendorf, M., Deliolanis, N., Novikov, M., Aikawa, E., Josephson, L., et al. (2007). Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo. Circulation, 115(11), 1384–1391.

    Article  PubMed  Google Scholar 

  102. Wu, Y., Ye, Q., Sato, K., Foley, L., Hitchens, T., & Ho, C. (2009). Noninvasive evaluation of cardiac allograft rejection by cellular and functional cardiac magnetic resonance. JACC Cardiovascular Imaging, 2(6), 731–741.

    Article  PubMed  Google Scholar 

  103. Stuber, M., Gilson, W., Schär, M., Kedziorek, D., Hofmann, L., Shah, S., et al. (2007). Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magnetic Resonance in Medicine, 58(5), 1072–1077.

    Article  PubMed  Google Scholar 

  104. Zhou, R., Idiyatullin, D., Moeller, S., Corum, C., Zhang, H., Qiao, H., et al. (2010). SWIFT detection of SPIO-labeled stem cells grafted in the myocardium. Magnetic Resonance in Medicine, 63(5), 1154–1161.

    Article  PubMed  Google Scholar 

  105. Liu, W., Dahnke, H., Jordan, E., Schaeffter, T., & Frank, J. (2008). In vivo MRI using positive-contrast techniques in detection of cells labeled with superparamagnetic iron oxide nanoparticles. NMR in Biomedicine, 21(3), 242–250.

    Article  PubMed  Google Scholar 

  106. Winter, E., Hogers, B., van der Graaf, L., Gittenberger-de Groot, A., Poelmann, R., & van der Weerd, L. (2010). Cell tracking using iron oxide fails to distinguish dead from living transplanted cells in the infarcted heart. Magnetic Resonance in Medicine, 63(3), 817–821.

    Article  PubMed  CAS  Google Scholar 

  107. Naumova, A., Reinecke, H., Yarnykh, V., Deem, J., Yuan, C., & Murry, C. (2010). Ferritin overexpression for noninvasive magnetic resonance imaging-based tracking of stem cells transplanted into the heart. Molecular Imaging, 9(4), 201–210.

    PubMed  CAS  Google Scholar 

  108. Cohen, B., Dafni, H., Meir, G., Harmelin, A., & Neeman, M. (2005). Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia, 7(2), 109–117.

    Article  PubMed  CAS  Google Scholar 

  109. Uppal, R., & Caravan, P. (2010). Targeted probes for cardiovascular MR imaging. Future Medicinal Chemistry, 2(3), 451–470.

    Article  PubMed  CAS  Google Scholar 

  110. Sosnovik, D., & Caravan, P. (2009). Molecular MRI of atherosclerotic plaque with targeted contrast agents. Current Cardiovascular Imaging, 2(2), 87–94.

    Article  Google Scholar 

  111. Caravan, P. (2009). Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents: Design and mechanism of action. Accounts of Chemical Research, 42(7), 851–862.

    Article  PubMed  CAS  Google Scholar 

  112. Oostendorp, M., Douma, K., Wagenaar, A., Slenter, J., Hackeng, T., van Zandvoort, M., et al. (2010). Molecular magnetic resonance imaging of myocardial angiogenesis after acute myocardial infarction. Circulation, 121(6), 775–783.

    Article  PubMed  CAS  Google Scholar 

  113. Helm, P. A., Caravan, P., French, B. A., Jacques, V., Shen, L., Xu, Y., et al. (2008). Postinfarction myocardial scarring in mice: Molecular MR imaging with use of a collagen-targeting contrast agent. Radiology, 247(3), 788–796.

    Article  PubMed  Google Scholar 

  114. Spuentrup, E., Botnar, R., Wiethoff, A., Ibrahim, T., Kelle, S., Katoh, M., et al. (2008). MR imaging of thrombi using EP-2140R, a fibrin-specific contrast agent: Initial results in patients. European Radiology, 18(9), 1995–2005.

    Article  PubMed  Google Scholar 

  115. Bers, D. M. (2008). Calcium cycling and signaling in cardiac myocytes. Annual Review of Physiology, 70(1), 23–49.

    Article  PubMed  CAS  Google Scholar 

  116. Bers, D. M. (2006). Altered cardiac myocyte calcium regulation in heart failure. The Journal of Physiology, 21, 380–387.

    Article  CAS  Google Scholar 

  117. Masumiya, H., Tsujikawa, H., Hino, N., & Ochi, R. (2003). Modulation of manganese currents by 1,4-dihydropyridines, isoproterenol, and foskolin in rabbit ventricular cells. Pflügers Archiv - European Journal of Physiology, 446, 695–701.

    Article  PubMed  CAS  Google Scholar 

  118. Hu, T., Chuang, K., Yanasak, N., & Koretsky, A. (2011). Relationship between blood and myocardium manganese levels during manganese-enhanced MRI (MEMRI) with T(1) mapping in rats. NMR in Biomedicine, 24(1), 46–53.

    Article  PubMed  CAS  Google Scholar 

  119. Koretsky, A., & Silva, A. (2004). Manganese-enhanced magnetic resonance imaging (MEMRI). NMR in Biomedicine, 17(8), 527–531.

    Article  PubMed  CAS  Google Scholar 

  120. Wendland, M. (2004). Applications of manganese-enhanced magnetic resonance imaging (MEMRI) to imaging of the heart. NMR in Biomedicine, 17(8), 581–594.

    Article  PubMed  CAS  Google Scholar 

  121. Hu, T. C., Christian, T. F., Aletras, A. H., Taylor, J. L., Koretsky, A. P., & Arai, A. E. (2005). Manganese enhanced magnetic resonance imaging of normal and ischemic canine heart. Magnetic Resonance in Medicine, 54(1), 196–200.

    Article  PubMed  CAS  Google Scholar 

  122. Natanzon, A., Aletras, A., Hsu, L., & Arai, A. (2005). Determining canine myocardial area at risk with manganese-enhanced MR imaging. Radiology, 236(3), 859–866.

    Article  PubMed  Google Scholar 

  123. Hu, T. C. C., Pautler, R. G., MacGowan, G. A., & Koretsky, A. P. (2001). Manganese-enhanced MRI of mouse heart during changes in inotropy. Magnetic Resonance in Medicine, 46(5), 884–890.

    Article  PubMed  CAS  Google Scholar 

  124. Hu, T., Bao, W., Lenhard, S., Schaeffer, T., Yue, T., Willette, R., et al. (2004). Simultaneous assessment of left-ventricular infarction size, function and tissue viability in a murine model of myocardial infarction by cardiac manganese-enhanced magnetic resonance imaging (MEMRI). NMR in Biomedicine, 17(8), 620–626.

    Article  PubMed  CAS  Google Scholar 

  125. Waghorn, B., Edwards, T., Yang, Y., Chuang, K., Yanasak, N., & Hu, T. (2008). Monitoring dynamic alterations in calcium homeostasis by T (1)-weighted and T (1)-mapping cardiac manganese-enhanced MRI in a murine myocardial infarction model. NMR in Biomedicine, 21(10), 1102–1111.

    Article  PubMed  CAS  Google Scholar 

  126. Waghorn, B., Yang, Y., Baba, A., Matsuda, T., Schumacher, A., Yanasak, N., et al. (2009). Assessing manganese efflux using SEA0400 and cardiac T1-mapping manganese-enhanced MRI in a murine model. NMR in Biomedicine, 22(8), 874–881.

    Article  PubMed  CAS  Google Scholar 

  127. Vandsburger, M., French, B., Kramer, C., & Epstein, F. H. (2010). Cine DENSE and manganese-enhanced MRI demonstrate that nNOS, and not eNOS, plays a dominant role in modulating EC-coupling in the mouse heart. Circulation, 122, A12386.

    Google Scholar 

  128. Fernandes, J., Storey, P., da Silva, J., de Figueiredo, G., Kalaf, J., & Coelho, O. (2011). Preliminary assessment of cardiac short term safety and efficacy of manganese chloride for cardiovascular magnetic resonance in humans. Journal of Cardiovascular Magnetic Resonance, 13(1), 6. epub ahead of print.

    Article  PubMed  Google Scholar 

  129. Markl, M., Kilner, P., & Ebbers, T. (2011). Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 13(1), 7–29.

    Article  PubMed  Google Scholar 

  130. Caro, C. G. (2009). Discovery of the role of wall shear in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(2), 158–161.

    Article  PubMed  CAS  Google Scholar 

  131. Gelfand, B., Epstein, F. H., & Blackman, B. (2006). Spatial and spectral heterogeneity of time-varying shear stress profiles in the carotid bifurcation by phase-contrast MRI. Journal of Magnetic Resonance Imaging, 24(6), 1386–1392.

    Article  PubMed  Google Scholar 

  132. Markl, M., Wegent, F., Zech, T., Bauer, S., Strecker, C., Schumacher, M., et al. (2010). In vivo wall shear stress distribution in the carotid artery: Effect of bifurcation geometry, internal carotid artery stenosis, and recanalization therapy. Circulation Cardiovascular Imaging, 3(6), 647–655.

    Article  PubMed  Google Scholar 

  133. Markl, M., Geiger, J., Kilner, P., Föll, D., Stiller, B., Beyersdorf, F., et al. (2011). Time-resolved three-dimensional magnetic resonance velocity mapping of cardiovascular flow paths in volunteers and patients with Fontan circulation. European Journal of Cardiothoracic Surgery, 39(2), 206–212.

    Article  PubMed  Google Scholar 

  134. Harloff, A., Nussbaumer, A., Bauer, S., Stalder, A., Frydrychowicz, A., Weiller, C., et al. (2010). In vivo assessment of wall shear stress in the atherosclerotic aorta using flow-sensitive 4D MRI. Magnetic Resonance in Medicine, 63(6), 1529–1536.

    Article  PubMed  Google Scholar 

  135. Harloff, A., Albrecht, F., Spreer, J., Stalder, A., Bock, J., Frydrychowicz, A., et al. (2009). 3D blood flow characteristics in the carotid artery bifurcation assessed by flow-sensitive 4D MRI at 3 T. Magnetic Resonance in Medicine, 61(1), 65–74.

    Article  PubMed  CAS  Google Scholar 

  136. Janiczek, R., Meyer, C., Acton, S. T., Blackman, B., & Epstein, F. H. (2009). 4D spiral phase-contrast MRI of wall shear stress in the mouse aorta. Procedings of the International Society of Magnetic Resonance in Medicine, 17, 3857.

    Google Scholar 

  137. Berr, S. S., Roy, R. J., French, B. A., Yang, Z., Gilson, W., Kramer, C. M., et al. (2005). Black blood gradient echo cine magnetic resonance imaging of the mouse heart. Magnetic Resonance in Medicine, 53(5), 1074–1079.

    Article  PubMed  Google Scholar 

  138. Beyers, R., Smith, R., Xu, Y., Piras, B., Berr, S., Meyer, C., Kramer, C., French, B., Epstein, F. H. (2011). T2-weighted MRI of post-infarct myocardial edema in mice. Magnetic Resonance in Medicine (in press)

  139. Cernicanu, A., & Axel, L. (2006). Theory-based signal calibration with single-point T1 measurements for first-pass quantitative perfusion MRI studies. Academic Radiology, 13(6), 686–693.

    Article  PubMed  Google Scholar 

  140. Vandervelde, S., van Amerongen, M. J., Tio, R. A., Petersen, A. H., van Luyn, M. J. A., & Harmsen, M. C. (2006). Increased inflammatory response and neovascularization in reperfused vs. nonreperfused murine myocardial infarction. Cardiovascular Pathology, 15(2), 83.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Work by MHV was supported by American Heart Association pre-doctoral grant AHA0815242E, and by a postdoctoral fellowship from the Whitaker International Fellows and Scholars Program. FHE is supported by NIH R01 EB 001763. The authors would like to acknowledge the contribution of figure material from Michael Salerno, Amy West, Ron Beyers, Patrick Antkowiak, Nivedita Naresh, and Xiao Chen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick H. Epstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandsburger, M.H., Epstein, F.H. Emerging MRI Methods in Translational Cardiovascular Research. J. of Cardiovasc. Trans. Res. 4, 477–492 (2011). https://doi.org/10.1007/s12265-011-9275-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9275-1

Keywords

Navigation