Skip to main content

Advertisement

Log in

Stretch-Induced Upregulation of Connective Tissue Growth Factor in Rabbit Cardiomyocytes

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Connective Tissue Growth Factor (CTGF, CCN2) is considered to play an important role in cardiac remodelling. We studied whether stretch is a primary stimulus to induce CTGF expression in vivo in rabbit heart, and in vitro in isolated cardiomyocytes and fibroblasts. Twenty weeks of combined volume and pressure overload resulted in eccentric left ventricular (LV) hypertrophy, with increased LV internal diameter (+36 %) and LV weight (+53 %). Myocardial CTGF mRNA and protein levels were substantially increased in the overloaded animals. In isolated adult rabbit cardiomyocytes, cyclic stretch strongly induced CTGF mRNA expression (2.9-fold at 48 h), whereas in cardiac fibroblasts CTGF-induction was transient and modest (1.4-fold after 4 h). Conditioned medium from stretched fibroblasts induced CTGF mRNA expression in non-stretched cardiomyocytes (2.3-fold at 48 h). Our findings indicate that stretch is an important primary trigger for CTGF-induction in the overloaded heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Opie, L. H., Commerford, P. J., Gersh, B. J., & Pfeffer, M. A. (2006). Controversies in ventricular remodelling. Lancet, 367(9507), 356–367.

    Article  PubMed  Google Scholar 

  2. Swynghedauw, B. (1999). Molecular mechanisms of myocardial remodeling. Physiological Reviews, 79(1), 215–262.

    PubMed  CAS  Google Scholar 

  3. Ohnishi, H., Oka, T., Kusachi, S., Nakanishi, T., Takeda, K., Nakahama, M., et al. (1998). Increased expression of connective tissue growth factor in the infarct zone of experimentally induced myocardial infarction in rats. Journal of Molecular and Cellular Cardiology, 30(11), 2411–2422.

    Article  PubMed  CAS  Google Scholar 

  4. Koitabashi, N., Arai, M., Kogure, S., Niwano, K., Watanabe, A., Aoki, Y., et al. (2007). Increased connective tissue growth factor relative to brain natriuretic peptide as a determinant of myocardial fibrosis. Hypertension, 49(5), 1120–1127.

    Article  PubMed  CAS  Google Scholar 

  5. D'Souza, A., Howarth, F. C., Yanni, J., Dobryznski, H., Boyett, M. R., Adeghate, E., et al. (2011). Left ventricle structural remodelling in the prediabetic Goto-Kakizaki rat. Experimental Physiology, 96(9), 875–888.

    PubMed  Google Scholar 

  6. Lang, C., Sauter, M., Szalay, G., Racchi, G., Grassi, G., Rainaldi, G., et al. (2008). Connective tissue growth factor: a crucial cytokine-mediating cardiac fibrosis in ongoing enterovirus myocarditis. Journal of Molecular Medicine, 86(1), 49–60.

    Article  PubMed  CAS  Google Scholar 

  7. Yun, S. H., Shin, J. O., Lim, B. K., Kim, K. L., Gil, C. O., Kim, D. K., et al. (2007). Change in the cells that express connective tissue growth factor in acute Coxsackievirus-induced myocardial fibrosis in mouse. Virus Research, 126(1–2), 62–68.

    Article  PubMed  CAS  Google Scholar 

  8. Daniels, A., van Bilsen, M., Goldschmeding, R., van der Vusse, G. J., & van Nieuwenhoven, F. A. (2009). Connective tissue growth factor and cardiac fibrosis. Acta Physiologica (Oxford, England), 195, 321–338.

    Article  CAS  Google Scholar 

  9. Foster, C. R., Zha, Q., Daniel, L. L., Singh, M., & Singh, K. (2012). Lack of ataxia telangiectasia mutated kinase induces structural and functional changes in the heart: role in beta-adrenergic receptor-stimulated apoptosis. Experimental Physiology, 97(4), 506–515.

    PubMed  CAS  Google Scholar 

  10. Hayata, N., Fujio, Y., Yamamoto, Y., Iwakura, T., Obana, M., Takai, M., et al. (2008). Connective tissue growth factor induces cardiac hypertrophy through Akt signaling. Biochemical and Biophysical Research Communications, 370(2), 274–278.

    Article  PubMed  CAS  Google Scholar 

  11. Panek, A. N., Posch, M. G., Alenina, N., Ghadge, S. K., Erdmann, B., Popova, E., et al. (2009). Connective tissue growth factor overexpression in cardiomyocytes promotes cardiac hypertrophy and protection against pressure overload. PLoS One, 4(8), e6743.

    Article  PubMed  Google Scholar 

  12. Ahmed, M. S., Gravning, J., Martinov, V. N., von Lueder, T. G., Edvardsen, T., Czibik, G., et al. (2011). Mechanisms of novel cardioprotective functions of CCN2/CTGF in myocardial ischemia-reperfusion injury. American Journal of Physiology. Heart and Circulatory Physiology, 300(4), H1291–H1302.

    Article  PubMed  CAS  Google Scholar 

  13. Ahmed, M. S., Oie, E., Vinge, L. E., Yndestad, A., Oystein Andersen, G., Andersson, Y., et al. (2004). Connective tissue growth factor–a novel mediator of angiotensin II-stimulated cardiac fibroblast activation in heart failure in rats. Journal of Molecular and Cellular Cardiology, 36(3), 393–404.

    Article  PubMed  CAS  Google Scholar 

  14. Ahmed, M. S., von Lueder, T. G., Oie, E., Kjekshus, H., & Attramadal, H. (2005). Induction of myocardial connective tissue growth factor in pacing-induced heart failure in pigs. Acta Physiologica Scandinavica, 184(1), 27–36.

    Article  PubMed  CAS  Google Scholar 

  15. Peng, H., Carretero, O. A., Brigstock, D. R., Oja-Tebbe, N., & Rhaleb, N. E. (2003). Ac-SDKP reverses cardiac fibrosis in rats with renovascular hypertension. Hypertension, 42(6), 1164–1170.

    Article  PubMed  Google Scholar 

  16. Dean, R. G., Balding, L. C., Candido, R., Burns, W. C., Cao, Z., Twigg, S. M., et al. (2005). Connective tissue growth factor and cardiac fibrosis after myocardial infarction. Journal of Histochemistry and Cytochemistry, 53(10), 1245–1256.

    Article  PubMed  CAS  Google Scholar 

  17. Leask, A. (2007). TGFbeta, cardiac fibroblasts, and the fibrotic response. Cardiovascular Research, 74(2), 207–212.

    Article  PubMed  CAS  Google Scholar 

  18. Rosenkranz, S., Wang, Y., Ahmad, N., Wani, M. A., & Ashraf, M. (2004). TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovascular Research, 63(3), 423–432.

    Article  PubMed  CAS  Google Scholar 

  19. Schild, C., & Trueb, B. (2002). Mechanical stress is required for high-level expression of connective tissue growth factor. Experimental Cell Research, 274(1), 83–91.

    Article  PubMed  CAS  Google Scholar 

  20. Webb, K., Hitchcock, R. W., Smeal, R. M., Li, W., Gray, S. D., & Tresco, P. A. (2005). Cyclic strain increases fibroblast proliferation, matrix accumulation, and elastic modulus of fibroblast-seeded polyurethane constructs. Journal of Biomechanics, 39, 1136–1144.

    Article  PubMed  Google Scholar 

  21. Chen, M. M., Lam, A., Abraham, J. A., Schreiner, G. F., & Joly, A. H. (2000). CTGF expression is induced by TGF- beta in cardiac fibroblasts and cardiac myocytes: a potential role in heart fibrosis. Journal of Molecular and Cellular Cardiology, 32(10), 1805–1819.

    Article  PubMed  CAS  Google Scholar 

  22. He, Z., Way, K. J., Arikawa, E., Chou, E., Opland, D. M., Clermont, A., et al. (2005). Differential regulation of angiotensin II-induced expression of connective tissue growth factor by protein kinase C isoforms in the myocardium. Journal of Biological Chemistry, 280(16), 15719–15726.

    Article  PubMed  CAS  Google Scholar 

  23. Blaauw, E., van Nieuwenhoven, F. A., Willemsen, P., Delhaas, T., Prinzen, F. W., Snoeckx, L. H., et al. (2010). Stretch-induced hypertrophy of isolated adult rabbit cardiomyocytes. American Journal of Physiology. Heart and Circulatory Physiology, 299(3), H780–H787.

    Article  PubMed  CAS  Google Scholar 

  24. van Borren, M. M., Verkerk, A. O., Vanharanta, S. K., Baartscheer, A., Coronel, R., & Ravesloot, J. H. (2002). Reduced swelling-activated Cl(−) current densities in hypertrophied ventricular myocytes of rabbits with heart failure. Cardiovascular Research, 53(4), 869–878.

    Article  PubMed  Google Scholar 

  25. Vermeulen, J. T., McGuire, M. A., Opthof, T., Coronel, R., de Bakker, J. M., Klopping, C., et al. (1994). Triggered activity and automaticity in ventricular trabeculae of failing human and rabbit hearts. Cardiovascular Research, 28(10), 1547–1554.

    Article  PubMed  CAS  Google Scholar 

  26. Gilson, N., el Houda, B. N., Corsin, A., & Crozatier, B. (1990). Left ventricular function and beta-adrenoceptors in rabbit failing heart. American Journal of Physiology. Heart and Circulatory Physiology, 258(3 Pt 2), H634–H641.

    CAS  Google Scholar 

  27. Liu, Y., Huang, H., Xia, W., Tang, Y., Li, H., & Huang, C. (2010). NADPH oxidase inhibition ameliorates cardiac dysfunction in rabbits with heart failure. Molecular and Cellular Biochemistry, 343(1–2), 143–153.

    Article  PubMed  CAS  Google Scholar 

  28. Dennler, S., Itoh, S., Vivien, D., ten Dijke, P., Huet, S., & Gauthier, J. M. (1998). Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO Journal, 17(11), 3091–3100.

    Article  PubMed  CAS  Google Scholar 

  29. Flanders, K. C., Holder, M. G., & Winokur, T. S. (1995). Autoinduction of mRNA and protein expression for transforming growth factor-beta S in cultured cardiac cells. Journal of Molecular and Cellular Cardiology, 27(2), 805–812.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

None declared

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frans A. van Nieuwenhoven.

Additional information

Associate Editor Jennifer L. Hall oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blaauw, E., Lorenzen-Schmidt, I., Babiker, F.A. et al. Stretch-Induced Upregulation of Connective Tissue Growth Factor in Rabbit Cardiomyocytes. J. of Cardiovasc. Trans. Res. 6, 861–869 (2013). https://doi.org/10.1007/s12265-013-9489-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-013-9489-5

Key words

Navigation