Skip to main content

Advertisement

Log in

AD-16 Protects Against Hypoxic-Ischemic Brain Injury by Inhibiting Neuroinflammation

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Neuroinflammation is a key contributor to the pathogenic cascades induced by hypoxic-ischemic (HI) insult in the neonatal brain. AD-16 is a novel anti-inflammatory compound, recently found to exert potent inhibition of the lipopolysaccharide-induced production of pro-inflammatory and neurotoxic mediators. In this study, we evaluated the effect of AD-16 on primary astrocytes and neurons under oxygen-glucose deprivation (OGD) in vitro and in mice with neonatal HI brain injury in vivo. We demonstrated that AD-16 protected against OGD-induced astrocytic and neuronal cell injury. Single dose post-treatment with AD-16 (1 mg/kg) improved the neurobehavioral outcome and reduced the infarct volume with a therapeutic window of up to 6 h. Chronic administration reduced the mortality rate and preserved whole-brain morphology following neonatal HI. The in vitro and in vivo effects suggest that AD-16 offers promising therapeutic efficacy in attenuating the progression of HI brain injury and protecting against the associated mortality and morbidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hagberg H, Mallard C, Ferriero DM, Vannucci SJ, Levison SW, Vexler ZS. The role of inflammation in perinatal brain injury. Nat Rev Neurol 2015, 11: 192–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chalak LF, Rollins N, Morriss MC, Brion LP, Heyne R, Sánchez PJ. Perinatal acidosis and hypoxic-ischemic encephalopathy in preterm infants of 33 to 35 weeks’ gestation. J Pediatr 2012, 160: 388–394.

    Article  PubMed  Google Scholar 

  3. Kurinczuk JJ, White-Koning M, Badawi N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev 2010, 86: 329–338.

    Article  PubMed  Google Scholar 

  4. Davidson JO, Wassink G, van den Heuij LG, Bennet L, Gunn AJ. Therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy - Where to from here? Front Neurol 2015, 6: 198.

    PubMed  PubMed Central  Google Scholar 

  5. Li B, Concepcion K, Meng X, Zhang L. Brain-immune interactions in perinatal hypoxic-ischemic brain injury. Prog Neurobiol 2017, 159: 50–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Azzopardi D, Wyatt JS, Cady EB, Delpy DT, Baudin J, Stewart AL, et al. Prognosis of newborn infants with hypoxic-ischemic brain injury assessed by phosphorus magnetic resonance spectroscopy. Pediatr Res 1989, 25: 445–451.

    Article  CAS  PubMed  Google Scholar 

  7. Shankaran S, Pappas A, McDonald SA, Vohr BR, Hintz SR, Yolton K, et al. Childhood outcomes after hypothermia for neonatal encephalopathy. N Engl J Med 2012, 366: 2085–2092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wood T, Osredkar D, Puchades M, Maes E, Falck M, Flatebø T, et al. Treatment temperature and insult severity influence the neuroprotective effects of therapeutic hypothermia. Sci Rep 2016, 6: 23430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yenari MA, Han HS. Neuroprotective mechanisms of hypothermia in brain ischaemia. Nat Rev Neurosci 2012, 13: 267–278.

    Article  CAS  PubMed  Google Scholar 

  10. Edwards AD, Brocklehurst P, Gunn AJ, Halliday H, Juszczak E, Levene M, et al. Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ 2010, 340: c363.

  11. Li B, Dasgupta C, Huang L, Meng XM, Zhang LB. MiRNA-210 induces microglial activation and regulates microglia-mediated neuroinflammation in neonatal hypoxic-ischemic encephalopathy. Cell Mol Immunol 2020, 17: 976–991.

    Article  CAS  PubMed  Google Scholar 

  12. Liu FD, McCullough LD. Inflammatory responses in hypoxic ischemic encephalopathy. Acta Pharmacol Sin 2013, 34: 1121–1130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Martín-Ancel A, García-Alix A, Pascual-Salcedo D, Cabañas F, Valcarce M, Quero J. Interleukin-6 in the cerebrospinal fluid after perinatal asphyxia is related to early and late neurological manifestations. Pediatrics 1997, 100: 789–794.

    Article  PubMed  Google Scholar 

  14. Saliba E, Henrot A. Inflammatory mediators and neonatal brain damage. Biol Neonate 2001, 79: 224–227.

    Article  CAS  PubMed  Google Scholar 

  15. Del Bigio MR, Becker LE. Microglial aggregation in the dentate gyrus: A marker of mild hypoxic-ischaemic brain insult in human infants. Neuropathol Appl Neurobiol 1994, 20: 144–151.

    Article  PubMed  Google Scholar 

  16. Chen CY, Sun WZ, Kang KH, Chou HC, Tsao PN, Hsieh WS, et al. Hypoxic preconditioning suppresses glial activation and neuroinflammation in neonatal brain insults. Mediators Inflamm 2015, 2015: 632592.

  17. Rocha-Ferreira E, Hristova M. Antimicrobial peptides and complement in neonatal hypoxia-ischemia induced brain damage. Front Immunol 2015, 6: 56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Girard S, Sébire H, Brochu ME, Briota S, Sarret P, Sébire G. Postnatal administration of IL-1Ra exerts neuroprotective effects following perinatal inflammation and/or hypoxic-ischemic injuries. Brain Behav Immun 2012, 26: 1331–1339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stridh L, Smith PL, Naylor AS, Wang X, Mallard C. Regulation of toll-like receptor 1 and -2 in neonatal mice brains after hypoxia-ischemia. J Neuroinflammation 2011, 8: 45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou W, Zhong GF, Fu SH, Xie H, Chi TY, Li LY, et al. Microglia-based phenotypic screening identifies a novel inhibitor of neuroinflammation effective in Alzheimer’s disease models. ACS Chem Neurosci 2016, 7: 1499–1507.

    Article  CAS  PubMed  Google Scholar 

  21. Sun HS, Xu BF, Chen WL, Xiao AJ, Turlova E, Alibraham A, et al. Neuronal K(ATP) channels mediate hypoxic preconditioning and reduce subsequent neonatal hypoxic-ischemic brain injury. Exp Neurol 2015, 263: 161–171.

    Article  CAS  PubMed  Google Scholar 

  22. Turlova E, Bae CYJ, Deurloo M, Chen WL, Barszczyk A, Horgen FD, et al. TRPM7 regulates axonal outgrowth and maturation of primary hippocampal neurons. Mol Neurobiol 2016, 53: 595–610.

    Article  CAS  PubMed  Google Scholar 

  23. Juurlink BH, Hertz L, Yager JY. Astrocyte maturation and susceptibility to ischaemia or substrate deprivation. Neuroreport 1992, 3: 1135–1137.

    Article  CAS  PubMed  Google Scholar 

  24. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017, 541: 481–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kawabori M, Kacimi R, Kauppinen T, Calosing C, Kim JY, Hsieh CL, et al. Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. J Neurosci 2015, 35: 3384–3396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu R, Li X, Xu P, Huang L, Cheng J, Huang X, et al. TREM2 protects against cerebral ischemia/reperfusion injury. Mol Brain 2017, 10: 20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Sieber MW, Jaenisch N, Brehm M, Guenther M, Linnartz-Gerlach B, Neumann H, et al. Attenuated inflammatory response in triggering receptor expressed on myeloid cells 2 (TREM2) knock-out mice following stroke. PLoS One 2013, 8: e52982. https://doi.org/10.1371/journal.pone.0052982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shah ZA, Li RC, Ahmad AS, Kensler TW, Yamamoto M, Biswal S, et al. The flavanol (-)-epicatechin prevents stroke damage through the Nrf2/HO1 pathway. J Cereb Blood Flow Metab 2010, 30: 1951–1961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE, Mayo L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med 2016, 22: 586–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun P, Yue H, Xing Q, Deng W, Ou Y, Pan G, et al. Compound AD16 reduces amyloid plaque deposition and modifies microglia in a transgenic mouse model of Alzheimer’s disease. ACS Pharmacol Transl Sci 2020, 3: 1100–1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun P, Zhou W, Yue H, Zhang C, Ou YT, Yang ZJ, et al. Compound AD110 Acts as therapeutic management for Alzheimer’s disease and stroke in mouse and rat models. ACS Chem Neurosci 2020, 11: 929–938.

    Article  CAS  PubMed  Google Scholar 

  32. Soul JS, Robertson RL, Tzika AA, du Plessis AJ, Volpe JJ. Time course of changes in diffusion-weighted magnetic resonance imaging in a case of neonatal encephalopathy with defined onset and duration of hypoxic-ischemic insult. Pediatrics 2001, 108: 1211–1214.

    Article  CAS  PubMed  Google Scholar 

  33. Shankaran S, Laptook AR, Ehrenkranz RA, Tyson JE, McDonald SA, Donovan EF, et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 2005, 353: 1574–1584.

    Article  CAS  PubMed  Google Scholar 

  34. Thoresen M, Tooley J, Liu X, Jary S, Fleming P, Luyt K, et al. Time is brain: Starting therapeutic hypothermia within three hours after birth improves motor outcome in asphyxiated newborns. Neonatology 2013, 104: 228–233.

    Article  PubMed  Google Scholar 

  35. Sabir H, Scull-Brown E, Liu X, Thoresen M. Immediate hypothermia is not neuroprotective after severe hypoxia-ischemia and is deleterious when delayed by 12 hours in neonatal rats. Stroke 2012, 43: 3364–3370.

    Article  PubMed  Google Scholar 

  36. Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008, 9: 47–59.

    Article  CAS  PubMed  Google Scholar 

  37. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 1998, 281: 1322–1326.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu C, Hallin U, Ozaki Y, Grandér R, Gatzinsky K, Bahr BA, et al. Nuclear translocation and calpain-dependent reduction of Bcl-2 after neonatal cerebral hypoxia-ischemia. Brain Behav Immun 2010, 24: 822–830.

    Article  CAS  PubMed  Google Scholar 

  39. Xiong T, Tang J, Zhao J, Chen H, Zhao F, Li J, et al. Involvement of the Akt/GSK-3β/CRMP-2 pathway in axonal injury after hypoxic-ischemic brain damage in neonatal rat. Neuroscience 2012, 216: 123–132.

    Article  CAS  PubMed  Google Scholar 

  40. Hagberg H, Gilland E, Bona E, Hanson LA, Hahin-Zoric M, Blennow M, et al. Enhanced expression of interleukin (IL)-1 and IL-6 messenger RNA and bioactive protein after hypoxia-ischemia in neonatal rats. Pediatr Res 1996, 40: 603–609.

    Article  CAS  PubMed  Google Scholar 

  41. Shih RH, Wang CY, Yang CM. NF-kappaB signaling pathways in neurological inflammation: a mini review. Front Mol Neurosci 2015, 8: 77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Aggarwal BB. Nuclear factor-kappaB: the enemy within. Cancer Cell 2004, 6: 203–208.

    Article  CAS  PubMed  Google Scholar 

  43. Hristova M, Rocha-Ferreira E, Fontana X, Thei L, Buckle R, Christou M, et al. Inhibition of signal transducer and activator of transcription 3 (STAT3) reduces neonatal hypoxic-ischaemic brain damage. J Neurochem 2016, 136: 981–994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wei CJ, Cui P, Li H, Lang WJ, Liu GY, Ma XF. Shared genes between Alzheimer’s disease and ischemic stroke. CNS Neurosci Ther 2019, 25: 855–864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rosciszewski G, Cadena V, Murta V, Lukin J, Villarreal A, Roger T, et al. Toll-like receptor 4 (TLR4) and triggering receptor expressed on myeloid cells-2 (TREM-2) activation balance astrocyte polarization into a proinflammatory phenotype. Mol Neurobiol 2018, 55: 3875–3888.

    CAS  PubMed  Google Scholar 

  46. Liu AH, Chu M, Wang YP. Up-regulation of Trem2 inhibits hippocampal neuronal apoptosis and alleviates oxidative stress in epilepsy via the PI3K/Akt pathway in mice. Neurosci Bull 2019, 35: 471–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jay TR, von Saucken VE, Muñoz B, Codocedo JF, Atwood BK, Lamb BT, et al. TREM2 is required for microglial instruction of astrocytic synaptic engulfment in neurodevelopment. Glia 2019, 67: 1873–1892.

    PubMed  Google Scholar 

  48. Hu XM, Li PY, Guo YL, Wang HY, Leak RK, Chen S, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 2012, 43: 3063–3070.

    Article  CAS  PubMed  Google Scholar 

  49. Kanazawa M, Ninomiya I, Hatakeyama M, Takahashi T, Shimohata T. Microglia and monocytes/macrophages polarization reveal novel therapeutic mechanism against stroke. Int J Mol Sci 2017, 18: E2135.

    Article  PubMed  CAS  Google Scholar 

  50. Hellström Erkenstam N, Smith PL, Fleiss B, Nair S, Svedin P, Wang W, et al. Temporal characterization of microglia/macrophage phenotypes in a mouse model of neonatal hypoxic-ischemic brain injury. Front Cell Neurosci 2016, 10: 286.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wang YZ, Tian D, Zhao YS, Qu MY, Pan Y, Wei CW, et al. Propofol protects regulatory T cells, suppresses neurotoxic astrogliosis, and potentiates neurological recovery after ischemic stroke. Neurosci Bull 2021, 37: 725–728.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Canadian Institutes of Health Research (CIHR PJT-153155) to ZPF and a Natural Sciences and Engineering Research Council of Canada Discovery Grant (NSERC RGPIN-2016-04574) to HSS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Shuo Sun or Zhong-Ping Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 643 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Luo, Z., Ovcjak, A. et al. AD-16 Protects Against Hypoxic-Ischemic Brain Injury by Inhibiting Neuroinflammation. Neurosci. Bull. 38, 857–870 (2022). https://doi.org/10.1007/s12264-021-00816-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-021-00816-3

Keywords

Navigation