Skip to main content
Log in

Peptides conjugation on biomaterials: chemical conjugation approaches and their promoted multifunction for biomedical applications

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Researchers have made significant efforts to attach peptides to various biomaterials, resulting in diverse functionalities. By harnessing the advantages of peptides, functions such as high specificity, potency, cost-effectiveness, small size for improved tissue penetration and targeted delivery, biodegradability, and novel therapeutic applications can be achieved through their attachment to biomaterials. Of various methods available for modifying biomolecules, chemical techniques are the most established and can effectively immobilize the desired molecule onto a specific surface. This article provides a comprehensive overview of the chemical modification methods used for attaching peptides to various biomaterials in recent studies and showcases some of their latest applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright permission granted by John Wiley and Sons. B pH-responsive PEPc–PMAA peptide–polymer conjugates [42]. Copyright permission granted by the American Chemical Society. C Star-shaped peptide–PEG hybrid polymers and their self-assembly to produce pH-responsive hydrogels [43]. Copyright permission granted by the American Chemical Society

Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lang K, Chin JW (2014) Bioorthogonal reactions for labeling proteins. ACS Chem Biol 9(1):16–20

    Article  CAS  PubMed  Google Scholar 

  2. Zhang C et al (2019) Arylation chemistry for bioconjugation. Angewandte Chemie Int Ed 58(15):4810–4839

    Article  CAS  Google Scholar 

  3. Spicer CD, Pashuck ET, Stevens MM (2018) Achieving controlled biomolecule-biomaterial conjugation. Chem Rev 118(16):7702–7743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Krishna OD, Kiick KL (2010) Protein-and peptide-modified synthetic polymeric biomaterials. Peptide Sci: Original Res Biomol 94(1):32–48

    Article  CAS  Google Scholar 

  5. Fisher SA, Baker AEG, Shoichet MS (2017) Designing peptide and protein modified hydrogels: selecting the optimal conjugation strategy. J Am Chem Soc 139(22):7416–7427

    Article  CAS  PubMed  Google Scholar 

  6. Wronska MA, O’Connor IB, Tilbury MA, Srivastava A, Wall JG (2016) Adding functions to biomaterial surfaces through protein incorporation. Adv Mater 28(27):5485–5508

    Article  CAS  PubMed  Google Scholar 

  7. Rakesh KP, Suhas R, Gowda DC (2019) Anti-inflammatory and antioxidant peptide-conjugates: modulation of activity by charged and hydrophobic residues. Int J Pept Res Ther 25(1):227–234

    Article  CAS  Google Scholar 

  8. Taheri-Ledari R, Maleki A (2020) Antimicrobial therapeutic enhancement of levofloxacin via conjugation to a cell-penetrating peptide: An efficient sonochemical catalytic process. J Pept Sci 26(10):e3277

    Article  CAS  PubMed  Google Scholar 

  9. Nanda JS, Lorsch JR (2014) Chapter eight - Labeling a protein with fluorophores using NHS ester derivatization. In: Lorsch J (ed) Methods in enzymology. Academic Press, pp 87–94

    Google Scholar 

  10. Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic Press, New York

    Google Scholar 

  11. D’Este M, Eglin D, Alini M (2014) A systematic analysis of DMTMM vs EDC/NHS for ligation of amines to Hyaluronan in water. Carbohyd Polym 108:239–246

    Article  Google Scholar 

  12. Rosen CB, Francis MB (2017) Targeting the N terminus for site-selective protein modification. Nat Chem Biol 13(7):697–705

    Article  CAS  PubMed  Google Scholar 

  13. Chen D et al (2017) Selective N-terminal functionalization of native peptides and proteins. Chem Sci 8(4):2717–2722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chalker JM, Bernardes GJ, Lin YA, Davis BG (2009) Chemical modification of proteins at cysteine: opportunities in chemistry and biology. Chem An Asian J 4(5):630–640

    Article  CAS  Google Scholar 

  15. Darling NJ et al (2016) Controlling the kinetics of thiol-maleimide Michael-type addition gelation kinetics for the generation of homogenous poly(ethylene glycol) hydrogels. Biomaterials 101:199–206

    Article  CAS  PubMed  Google Scholar 

  16. Hunckler MD et al (2019) Linkage groups within thiol-ene photoclickable PEG hydrogels control in vivo stability. Adv Healthc Mater 8(14):e1900371

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang G et al (2022) Vascular endothelial growth factor mimetic peptide and parathyroid hormone (1–34) delivered via a blue-light-curable hydrogel synergistically accelerate bone regeneration. ACS Appl Mater Interfaces 14(31):35319–35332

    Article  CAS  PubMed  Google Scholar 

  18. Marino SM, Gladyshev VN (2010) Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces. J Mol Biol 404(5):902–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gunnoo SB, Madder A (2016) Chemical protein modification through cysteine. ChemBioChem 17(7):529–553

    Article  CAS  PubMed  Google Scholar 

  20. Mather BD et al (2006) Michael addition reactions in macromolecular design for emerging technologies. Prog Polym Sci 31(5):487–531

    Article  CAS  Google Scholar 

  21. Sun Y et al (2018) Thiol Michael addition reaction: a facile tool for introducing peptides into polymer-based gene delivery systems. Polym Int 67(1):25–31

    Article  CAS  Google Scholar 

  22. Lutolf MP et al (2001) Systematic modulation of michael-type reactivity of thiols through the use of charged amino acids. Bioconjug Chem 12(6):1051–1056

    Article  CAS  PubMed  Google Scholar 

  23. Nair DP et al (2014) The thiol-michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem Mater 26(1):724–744

    Article  CAS  Google Scholar 

  24. Chan JW et al (2010) Nucleophile-initiated thiol-michael reactions: effect of organocatalyst, thiol, and ene. Macromolecules 43(15):6381–6388

    Article  CAS  Google Scholar 

  25. Wu H et al (2018) Manipulation of glutathione-mediated degradation of thiol-maleimide conjugates. Bioconjug Chem 29(11):3595–3605

    Article  CAS  PubMed  Google Scholar 

  26. Nam HY et al (2011) Cell penetrating peptide conjugated bioreducible polymer for siRNA delivery. Biomaterials 32(22):5213–5222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Talvitie E et al (2012) Peptide-functionalized chitosan–DNA nanoparticles for cellular targeting. Carbohyd Polym 89(3):948–954

    Article  CAS  Google Scholar 

  28. Baldwin AD, Kiick KL (2011) Tunable degradation of maleimide-thiol adducts in reducing environments. Bioconjug Chem 22(10):1946–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Patterson J, Hubbell JA (2010) Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2. Biomaterials 31(30):7836–7845

    Article  CAS  PubMed  Google Scholar 

  30. Galli C et al (2016) Improved scaffold biocompatibility through anti-Fibronectin aptamer functionalization. Acta Biomater 42:147–156

    Article  CAS  PubMed  Google Scholar 

  31. Elbert DL, Hubbell JA (2001) Conjugate addition reactions combined with free-radical crosslinking for the design of materials for tissue engineering. Biomacromol 2(2):430–441

    Article  CAS  Google Scholar 

  32. Hahn SK et al (2006) Sustained release formulation of erythropoietin using hyaluronic acid hydrogels crosslinked by Michael addition. Int J Pharm 322(1):44–51

    Article  CAS  PubMed  Google Scholar 

  33. Navarro R et al (2017) Understanding the regioselectivity of Michael addition reactions to asymmetric divinylic compounds. RSC Adv 7(89):56157–56165

    Article  CAS  Google Scholar 

  34. Bermejo-Velasco D et al (2019) Modulating thiol pka promotes disulfide formation at physiological pH: an elegant strategy to design disulfide crosslinked hyaluronic acid hydrogels. Biomacromol 20(3):1412–1420

    Article  CAS  Google Scholar 

  35. Gunnoo SB et al (2018) Reviving old protecting group chemistry for site-selective peptide–protein conjugation. Chem Commun 54(84):11929–11932

    Article  CAS  Google Scholar 

  36. Bucci R et al (2021) Peptide grafting strategies before and after electrospinning of nanofibers. Acta Biomater 122:82–100

    Article  CAS  PubMed  Google Scholar 

  37. Roh S et al (2023) Surface Modification strategies for biomedical applications: enhancing cell-biomaterial interfaces and biochip performances. BioChip J 17(2):174–191

    Article  CAS  Google Scholar 

  38. Choi J et al (2023) Thermoresponsive, dually crosslinked elastin-like-polypeptide (ELP) micelle hydrogel with recovery properties. Korean J Chem Eng 40(8):1954–1962

    Article  CAS  Google Scholar 

  39. Gray VP et al (2022) Biomaterials via peptide assembly: design, characterization, and application in tissue engineering. Acta Biomater 140:43–75

    Article  CAS  PubMed  Google Scholar 

  40. Gauthier MA, Klok HA (2008) Peptide/protein-polymer conjugates: synthetic strategies and design concepts. Chem Commun (Camb) 23:2591–2611

    Article  Google Scholar 

  41. Zhang W et al (2023) A bispecific peptide-polymer conjugate bridging target-effector cells to enhance immunotherapy. Adv Healthc Mater 12(18):e2202977

    Article  PubMed  Google Scholar 

  42. Wang S et al (2021) Novel peptide-polymer conjugate with ph-responsive targeting/disrupting effects on biomembranes. Langmuir 37(29):8840–8846

    Article  CAS  PubMed  Google Scholar 

  43. Koga T et al (2022) Star-shaped peptide-polymer hybrids as fast ph-responsive supramolecular hydrogels. Biomacromol 23(7):2941–2950

    Article  CAS  Google Scholar 

  44. Kim S et al (2023) Low-loaded polyethylene glycol (PEG) resin for high-purity peptide synthesis and cell binding assays. BioChip J 17(4):447–457

    Article  CAS  Google Scholar 

  45. Kang B et al (2022) Magnetic nanochain-based smart drug delivery system with remote tunable drug release by a magnetic field. BioChip J 16(3):280–290

    Article  CAS  Google Scholar 

  46. Jeon H-Y, Lee A-J, Ha K-S (2022) Polymer-based delivery of peptide drugs to treat diabetes: normalizing hyperglycemia and preventing diabetic complications. BioChip J 16(2):111–127

    Article  CAS  Google Scholar 

  47. Zhang Y et al (2021) Polypeptides-drug conjugates for anticancer therapy. Adv Healthc Mater 10(11):e2001974

    Article  PubMed  Google Scholar 

  48. Gong Z et al (2020) pH-triggered morphological change in a self-assembling amphiphilic peptide used as an antitumor drug carrier. Nanotechnology 31(16):165601

    Article  CAS  PubMed  Google Scholar 

  49. Kelly CN et al (2021) Geometrically diverse lariat peptide scaffolds reveal an untapped chemical space of high membrane permeability. J Am Chem Soc 143(2):705–714

    Article  CAS  PubMed  Google Scholar 

  50. Hennrich U, Kopka K (2019) Lutathera(®): the first FDA- and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy. Pharmaceuticals (Basel) 12(3):114

    Article  CAS  PubMed  Google Scholar 

  51. Heh E et al (2023) Peptide drug conjugates and their role in cancer therapy. Int J Mol Sci 24(1):829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kumthekar P et al (2020) ANG1005, a brain-penetrating peptide-drug conjugate, shows activity in patients with breast cancer with leptomeningeal carcinomatosis and recurrent brain metastases. Clin Cancer Res 26(12):2789–2799

    Article  CAS  PubMed  Google Scholar 

  53. Demeule M et al (2021) TH1902, a new docetaxel-peptide conjugate for the treatment of sortilin-positive triple-negative breast cancer. Cancer Sci 112(10):4317–4334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Miller DS et al (2018) ZoptEC: Phase III randomized controlled study comparing zoptarelin with doxorubicin as second line therapy for locally advanced, recurrent, or metastatic endometrial cancer (NCT01767155). J Clin Oncol (An American Society of Clinical Oncology Journal) 36(15_Suppl):5503

    Article  Google Scholar 

  55. Hardan L et al (2023) Peptides in dentistry: a scoping review. Bioengineering 10(2):214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Foroushani FT et al (2022) Advances in surface modifications of the silicone breast implant and impact on its biocompatibility and biointegration. Biomater Res 26(1):80

    Article  PubMed  PubMed Central  Google Scholar 

  57. Panayotov IV et al (2023) Improving dental epithelial junction on dental implants with bioengineered peptides. Front Bioeng Biotechnol 11:1165853

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kim JH et al (2023) Harnessing protein sensing ability of electrochemical biosensors via a controlled peptide receptor–electrode interface. J Nanobiotechnol 21(1):100

    Article  CAS  Google Scholar 

  59. Woo H et al (2022) Sensitive and specific capture of polystyrene and polypropylene microplastics using engineered peptide biosensors. RSC Adv 12(13):7680–7688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fu Y et al (2021) Peptide cleavage-mediated and environmentally friendly photocurrent polarity switching system for prostate-specific antigen assay. Anal Chem 93(2):1076–1083

    Article  CAS  PubMed  Google Scholar 

  61. Wang M et al (2022) Peptide-derived biosensors and their applications in tumor immunology-related detection. Anal Chem 94(1):431–441

    Article  CAS  PubMed  Google Scholar 

  62. Lim JM et al (2018) Selection of affinity peptides for interference-free detection of cholera toxin. Biosens Bioelectron 99:289–295

    Article  CAS  PubMed  Google Scholar 

  63. Yoo J et al (2022) Highly specific peptide-mediated cuvette-form localized surface plasmon resonance (LSPR)-based fipronil detection in egg. Biosensors 12(11):914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kuk MU et al (2021) Rapid and efficient BAC recombineering: gain & loss screening system. Biotechnol Bioprocess Eng 26(6):1023–1033

    Article  CAS  Google Scholar 

  65. Xi X et al (2020) A H2O2-free electrochemical peptide biosensor based on Au@Pt bimetallic nanorods for highly sensitive sensing of matrix metalloproteinase 2. Chem Commun 56(45):6039–6042

    Article  CAS  Google Scholar 

  66. Nun N, Joy A (2023) Fabrication and bioactivity of peptide-conjugated biomaterial tissue engineering constructs. Macromol Rapid Commun 44(1):2200342

    Article  CAS  Google Scholar 

  67. Hosoyama K et al (2019) Peptide-based functional biomaterials for soft-tissue repair. Front Bioeng Biotechnol 23(7):470528

    Google Scholar 

  68. Cooper BM et al (2021) Peptides as a platform for targeted therapeutics for cancer: peptide–drug conjugates (PDCs). Chem Soc Rev 50(3):1480–1494

    Article  CAS  PubMed  Google Scholar 

  69. Werle M, Bernkop-Schnürch A (2006) Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids 30(4):351–367

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Chung-Ang University Research Scholarship Grants in 2022 (Mr. Jongjun Park). This research was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. RS-2023–00275006 and No. RS-2023-00211253).

Author information

Authors and Affiliations

Authors

Contributions

JC and HYL supervised the study. JK, JP, and YC designed the study and performed the literature survey. JK, YC, JP, HYL, and JC wrote the manuscript.

Corresponding authors

Correspondence to Hee-Young Lee or Jonghoon Choi.

Ethics declarations

Conflict of Interest

Dr. Jonghoon Choi is the CEO/Founder, and Dr. Yonghyun Choi is the CTO of Feynman Institute of Technology at the Nanomedicine Corporation, Seoul, 06974, Republic of Korea.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Choi, Y., Park, J. et al. Peptides conjugation on biomaterials: chemical conjugation approaches and their promoted multifunction for biomedical applications. Biotechnol Bioproc E (2024). https://doi.org/10.1007/s12257-024-00095-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12257-024-00095-5

Keywords

Navigation