Skip to main content
Log in

Thermoresponsive, dually cross-linked elastin-like-polypeptide (ELP) micelle hydrogel with recovery properties

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Thermoresponsive protein-based hydrogels have been widely used due to their high potential in biomedical fields. Elastin-like polypeptides (ELPs) are one of the proteins that show lower critical solution temperature (LCST) behavior, resulting in self-assembly above critical micellular temperature (CMT). Here, we utilized ABC-type blocky ELPs to form hydrogels by introducing cross-linking sites, resulting in good mechanical properties. The hydrogels showed temperature-dependent viscoelasticity due to their structure change. Also, the recovery process of ELP-based hydrogels after large deformation is significantly dependent on the types of cross-linking (i.e., ionic, covalent, or ionic-covalent hybrid).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Zhang, S. Jin, S. Li, X. Xue, J. Liu, Y Huang, Y. Jiang, W Chen, G. Zou and X. J. Liang, ACS Appl. Mater. Interfaces, 6, 5212 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. N. Annabi, S. M. Mithieux, G. Camci-Unal, M. R. Dokmeci, A. S. Weiss and A. Khademhosseini, Biochem. Eng. J., 77, 110 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. J.W Ro, H. Choi, T. Y. Heo, S. H. Choi and J. I. Won, Biotechnol. Bioprocess Eng., 23, 627 (2018).

    Article  CAS  Google Scholar 

  4. B. L. LeSavage, N. A. Suhar, C. M. Madl and S. C. Heilshorn, Jove, 135, e57739 (2018).

    Google Scholar 

  5. C. Chung, K. J. Lampe and S. C. Heilshorn, Biomacromolecules, 13, 3912 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A. Hennig, G. J. Gabriel, G. N. Tew and S. Matile, J. Am. Chem. Soc., 130, 10338 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. L. Ghasemi-Mobarakeh, M. P. Prabhakaran, M. Morshed, M. H. Nasr-Esfahani and S. Ramakrishna, Mater. Sci. Eng. C, 30, 1129 (2010).

    Article  CAS  Google Scholar 

  8. D. W Urry and T. M. Parker, J. Bioact. Compat. Polym, 6, 263 (1991).

    Article  CAS  Google Scholar 

  9. Y N. Zhang, R. K. Avery, Q. Vallmajo-Martin, A. Assmann, A. Vegh, A. Memic, B. D. Olsen, N. Annabi and A. Khademhosseini, Adv. Funct. Mater., 25, 4814 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. L. Li, S. Teller, R. J. Clifton, X. Jia and K. L. Kiick, Biomacromolecules, 12, 2302 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. B. A. Cox, B.C. Starcher and D. W Urry, J. Biol. Chem., 249, 997 (1974).

    Article  CAS  PubMed  Google Scholar 

  12. D.W. Urry, K. Okamoto, R.D. Harris, C.F. Hendrix and M.M. Long, Biochemistry, 15, 4083 (1976).

    Article  CAS  PubMed  Google Scholar 

  13. D. W Urry, J. Phys. Chem. B, 101, 11007 (1997).

    Article  CAS  Google Scholar 

  14. D. H. T. Le and A. Sugawara-Narutaki, Mol. Syst. Des. Eng., 4, 545 (2019).

    Article  CAS  Google Scholar 

  15. J. A. MacKay, D. J. Callahan, K. N. FitzGerald and A. Chilkoti, Biomacromolecules, 11, 2873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. D. E. Meyer and A. Chilkoti, Biomacromolecules, 5, 846 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. L. Shi, P. Ding, Y. Wang, Y. Zhang, D. Ossipov and J. Hilborn, Macromol. Rapid Commun, 40, 1800837 (2019).

    Article  Google Scholar 

  18. D. L. Taylor and M. in het Panhuis, Adv. Mater, 28, 9060 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. J. Y Sun, X. Zhao, W R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak and Z. Suo, Nature, 489, 133 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. Zhong, Y. T. Liu, X. Y. Liu, F. K. Shi, L. Q. Zhang, M. F. Zhu and X. M. Xie, Soft Matter, 12, 5420 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. S. Gu, G. Cheng, T. Yang, X. Ren and G. Gao, Macromol. Mater. Eng., 302, 1700402 (2017).

    Article  Google Scholar 

  22. J. R. McDaniel, J. A. MacKay, F. G. Quiroz and A. Chilkoti, Bio-macromolecules, 11, 944 (2010).

    Article  CAS  Google Scholar 

  23. J. E. Park and J. I. Won, Biotechnol. Bioprocess Eng., 14, 662 (2009).

    Article  CAS  Google Scholar 

  24. W Hassouneh, S. R. MacEwan and A. Chilkoti, Methods Enzymol., 502, 215 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. W Bode, F.X. Gomis-Ruth and W Stockler, FEBS Lett., 331, 134 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. E. Hadler-Olsen, B. Fadnes, I. Sylte, L. Uhlin-Hansen and J. O. Winberg, FEBS J., 278, 28 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. A. Vaish, S. G. Roy and P. De, Polymer, 58, 1 (2015).

    Article  CAS  Google Scholar 

  28. S. M. Janib, M. F. Pastuszka, S. Aluri, Z. Folchman-Wagner, P. Y. Hsueh, P. Shi, Y.A. Lin, H. Cui and J.A. MacKay, Polym. Chem., 5, 1614 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. A. Ghoorchian, J. T. Cole and N. B. Holland, Macromolecules, 43, 4340 (2010).

    Article  CAS  Google Scholar 

  30. W. Kim, J. Thevenot, E. Ibarboure, S. Lecommandoux and E. L. Chaikof, Angew. Chem., 122, 4353 (2010).

    Article  Google Scholar 

  31. M. Sahn, T. Yildirim, M. Dirauf, C. Weber, P. Sungur, S. Hoep-pener and U. S. Schubert, Macromolecules, 49, 7257 (2016).

    Article  CAS  Google Scholar 

  32. D. Kurkova, J. Kriz, P. Schmidt, J. Dybal, J. C. Rodriguez-Cabello and M. Alonso, Biomacromolecules, 4, 589 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. A. Junger, D. Kaufmann, T. Scheibel and R. Weberskirch, Macromol. Biosci., 5, 494 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. C. Xiao, J. Ding, L. Ma, C. Yang, X. Zhuang and X. Chen, Polym. Chem., 6, 738 (2015).

    Article  CAS  Google Scholar 

  35. E. Meco and K. J. Lampe, Biomacromolecules, 20, 1914 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. S. Sun and P. Wu, Macromolecules, 46, 236 (2013).

    Article  CAS  Google Scholar 

  37. J. Spevacek, J. Dybal, L. Starovoytova, A. Zhigunov and Z. Sedla-kova, Soft Matter, 8, 6110 (2012).

    Article  CAS  Google Scholar 

  38. G. Le Fer, A. L. Wirotius, A. Brulet, E. Garanger and S. Lecomman-doux, Biomacromolecules, 20, 254 (2018).

    Article  PubMed  Google Scholar 

  39. Q. Li, D. G. Barrett, P. B. Messersmith and N. Holten-Andersen, ACS Nano, 10, 1317 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants (2018R1D1A1B07041887) and (2021R1A2C2011164) from the National Research Foundation of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-In Won.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J., Ryu, MC., Kim, J.J. et al. Thermoresponsive, dually cross-linked elastin-like-polypeptide (ELP) micelle hydrogel with recovery properties. Korean J. Chem. Eng. 40, 1954–1962 (2023). https://doi.org/10.1007/s11814-023-1473-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1473-4

Keywords

Navigation