Skip to main content
Log in

Evaluation of Pretreatment and GABA Production Using Levilactobacillus brevis Fermentation of the Seaweed Saccharina japonica

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The seaweed has a high content of easily degradable carbohydrates, making it a potential substrate for the production of γ-aminobutyric acid (GABA). In this study, response surface methodology pretreatment and enzymatic saccharification (Es) were conducted on a flask culture of Saccharina japonica seaweed. The optimal hydrolytic conditions were: 10.8% (w/v) slurry content, 0.7% H2SO4, and 121°C for 30 min. Es using enzyme cocktails (Celluclast 1.5 L + Viscozyme L) at 16 U/mL produced 6.26 g/L glucose with an efficiency of 92%. The concentrations of laminarin and fucose (prebiotics) were 10.4 and 0.48 g/L after pretreatment and saccharification, respectively. The suitable monosodium glutamate (MSG) addition was 2% (w/v), and further increase in MSG addition (3–5% (w/v)) had no significant effect on GABA production. The pyridoxal 5′-phosphate (10 µM) addition time of 48–72 h was determined based on the GABA fermentation. Adapted Levilactobacillus brevis KCL010 to high concentrations of mannitol improved the synbiotic fermentation efficiency of S. japonica hydrolysates, further improving the consumption of mixed monosaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lopez-Santamarina, A., J. M. Miranda, A. D. C. Mondragon, A. Lamas, A. Cardelle-Cobas, C. M. Franco, and A. Cepeda (2020) Potential use of marine seaweeds as prebiotics: a review. Molecules 25: 1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Charoensiddhi, S., M. A. Conlon, C. M. M. Franco, and W. Zhang (2017) The development of seaweed-derived bioactive compounds for use as prebiotics and nutraceuticals using enzyme technologies. Trends Food Sci. Technol. 70: 20–33.

    Article  CAS  Google Scholar 

  3. Mohd Fauziee, N. A., L. S. Chang, W. A. Wan Mustapha, A. R. Md Nor, and S. J. Lim (2021) Functional polysaccharides of fucoidan, laminaran and alginate from Malaysian brown seaweeds (Sargassum polycystum, Turbinaria ornata and Padina boryana). Int. J. Biol. Macromol. 167: 1135–1145.

    Article  CAS  PubMed  Google Scholar 

  4. Kumar, S. A., M. Magnusson, L. C. Ward, N. A. Paul, and L. Brown (2015) Seaweed supplements normalise metabolic, cardiovascular and liver responses in high-carbohydrate, high-fat fed rats. Mar. Drugs 13: 788–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Seca, A. M. L. and D. C. G. A. Pinto (2018) Overview of the antihypertensive and anti-obesity effects of secondary metabolites from seaweeds. Mar. Drugs 16: 237.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yang, C.-F., S.-S. Lai, Y.-H. Chen, D. Liu, B. Liu, C. Ai, X.-Z. Wan, L.-Y. Gao, X.-H. Chen, and C. Zhao (2019) Anti-diabetic effect of oligosaccharides from seaweed Sargassum confusum via JNK-IRS1/PI3K signalling pathways and regulation of gut microbiota. Food Chem. Toxicol. 131: 110562.

    Article  CAS  PubMed  Google Scholar 

  7. Xue, M., X. Ji, H. Liang, Y. Liu, B. Wang, L. Sun, and W. Li (2018) The effect of fucoidan on intestinal flora and intestinal barrier function in rats with breast cancer. Food Funct. 9: 1214–1223.

    Article  CAS  PubMed  Google Scholar 

  8. Shin, T., M. Ahn, J. W. Hyun, S. H. Kim, and C. Moon (2014) Antioxidant marine algae phlorotannins and radioprotection: a review of experimental evidence. Acta Histochem. 116: 669–674.

    Article  CAS  PubMed  Google Scholar 

  9. Ferreira, S., A. P. Duarte, M. H. L. Ribeiro, J. A. Queiroz, and F. C. Domingues (2009) Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production. Biochem. Eng. J. 45: 192–200.

    Article  CAS  Google Scholar 

  10. Yao, W., L. Yang, Z. Shao, L. Xie, and L. Chen (2020) Identification of salt tolerance-related genes of Lactobacillus plantarum D31 and T9 strains by genomic analysis. Ann. Microbiol. 70: 10.

    Article  CAS  Google Scholar 

  11. Doron, S. and D. R. Snydman (2015) Risk and safety of probiotics. Clin. Infect. Dis. 60: S129–S134.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Soccol, C. R., M. R. M. Prado, L. M. B. Garcia, C. Rodrigues, A. B. P. Medeiros, and V. Thomaz-Soccol (2014) Current developments in probiotics. J. Microb. Biochem. Technol. 7: 11–20.

    Google Scholar 

  13. Cui, Y., K. Miao, S. Niyaphorn, and X. Qu (2020) Production of gamma-aminobutyric acid from lactic acid bacteria: a systematic review. Int. J. Mol. Sci. 21: 995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, H., T. Qiu, G. Huang, and Y. Cao (2010) Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb. Cell Fact. 9: 85.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Markowiak, P. and K. Slizewska (2017) Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9: 1021.

    Article  PubMed  PubMed Central  Google Scholar 

  16. AOAC (1995) Official Methods of Analysis. 16th ed. Association of Official Analytical Chemists.

  17. Vohra, A. and T. Satyanarayana (2002) Statistical optimization of the medium components by response surface methodology to enhance phytase production by Pichia anomala. Process Biochem. 37: 999–1004.

    Article  CAS  Google Scholar 

  18. Gajdos, L., V. T. Forsyth, M. P. Blakeley, M. Haertlein, A. Imberty, E. Samain, and J. M. Devos (2021) Production of perdeuterated fucose from glyco-engineered bacteria. Glycobiology 31: 151–158.

    Article  CAS  PubMed  Google Scholar 

  19. Rajauria, G., R. Ravindran, M. Garcia-Vaquero, D. K. Rai, T. Sweeney, and J. O’Doherty (2021) Molecular characteristics and antioxidant activity of laminarin extracted from the seaweed species Laminaria hyperborea, using hydrothermal-assisted extraction and a multi-step purification procedure. Food Hydrocoll. 112: 106332.

    Article  CAS  Google Scholar 

  20. Hayat, A., T. M. Jahangir, M. Y. Khuhawar, M. Alamgir, A. J. Siddiqui, and S. G. Musharraf (2014) Simultaneous HPLC determination of gamma amino butyric acid (GABA) and lysine in selected Pakistani rice varieties by pre-column derivatization with 2-hydroxynaphth aldehyde. J. Cereal Sci. 60: 356–360.

    Article  CAS  Google Scholar 

  21. Kim, N. Y., S.-K. Kim, and C. H. Ra (2021) Evaluation of gamma-aminobutyric acid (GABA) production by Lactobacillus plantarum using two-step fermentation. Bioprocess Biosyst. Eng. 44: 2099–2108.

    Article  CAS  PubMed  Google Scholar 

  22. Haaland, P. D. (1989) Statistical problem solving. pp. 1–18. In: P. D. Haaland (ed.). Experimental Design in Biotechnology. Marcel Dekker.

  23. Laroute, V., R. Mazzoli, P. Loubière, E. Pessione, and M. Cocaign-Bousquet (2021) Environmental conditions affecting GABA production in Lactococcus lactis NCDO 2118. Microorganisms 9: 122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shih, Y.-L., S.-C. Hsueh, Y.-L. Chen, J.-S. Chou, H.-Y. Chung, K.-L. Liu, H.-W. Jair, Y.-Y. Chuang, H.-F. Lu, J.-Y. Liu, and J.-G. Chung (2018) Laminarin promotes immune responses and reduces lactate dehydrogenase but increases glutamic pyruvic transaminase in normal mice in vivo. In Vivo 32: 523–529.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Nakata, T., D. Kyoui, H. Takahashi, B. Kimura, and T. Kuda (2016) Inhibitory effects of laminaran and alginate on production of putrefactive compounds from soy protein by intestinal microbiota in vitro and in rats. Carbohydr. Polym. 143: 61–69.

    Article  CAS  PubMed  Google Scholar 

  26. Usov, A. I., G. P. Smirnova, and N. G. Klochkova (2001) Polisakharidy vodorosleĭ. 55. Polisakharidnyĭ sostav nekotorykh burykh vodorosleĭ Kamchatki [Algae polysaccharides. 55. Polysaccharide composition of some brown Kamchatka algae]. Bioorg. Khim. 27: 444–448.

    CAS  PubMed  Google Scholar 

  27. Charoensiddhi, S., M. A. Conlon, M. S. Vuaran, C. M. M. Franco, and W. Zhang (2017) Polysaccharide and phlorotannin-enriched extracts of the brown seaweed Ecklonia radiata influence human gut microbiota and fermentation in vitro. J. Appl. Phycol. 29: 2407–2416.

    Article  CAS  Google Scholar 

  28. Kong, Q., S. Dong, J. Gao, and C. Jiang (2016) In vitro fermentation of sulfated polysaccharides from E. prolifera and L. japonica by human fecal microbiota. Int. J. Biol. Macromol. 91: 867–871.

    Article  CAS  PubMed  Google Scholar 

  29. Fu, X., C. Cao, B. Ren, B. Zhang, Q. Huang, and C. Li (2018) Structural characterization and in vitro fermentation of a novel polysaccharide from Sargassum thunbergii and its impact on gut microbiota. Carbohydr. Polym. 183: 230–239.

    Article  CAS  PubMed  Google Scholar 

  30. Ham, S., S. K. Bhatia, R. Gurav, Y.-K. Choi, J.-M. Jeon, J.-J. Yoon, K.-Y. Choi, J. Ahn, H. T. Kim, and Y.-H. Yang (2022) Gamma aminobutyric acid (GABA) production in Escherichia coli with pyridoxal kinase (pdxY) based regeneration system. Enzyme Microb. Technol. 155: 109994.

    Article  CAS  PubMed  Google Scholar 

  31. Villegas, J. M., L. Brown, G. Savoy de Giori, and E. M. Hebert (2016) Optimization of batch culture conditions for GABA production by Lactobacillus brevis CRL 1942, isolated from quinoa sourdough. LWT 67: 22–26.

    Article  CAS  Google Scholar 

  32. Yunes, R. A., E. U. Poluektova, M. S. Dyachkova, K. M. Klimina, A. S. Kovtun, O. V. Averina, V. S. Orlova, and V. N. Danilenko (2016) GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe 42: 197–204.

    Article  CAS  PubMed  Google Scholar 

  33. Yang, S.-Y., F.-X. Lü, Z.-X. Lu, X.-M. Bie, Y. Jiao, L.-J. Sun, and B. Yu (2008) Production of gamma-aminobutyric acid by Streptococcus salivarius subsp. thermophilus Y2 under submerged fermentation. Amino Acids 34: 473–478.

    Article  CAS  PubMed  Google Scholar 

  34. Kim, J.-H., S. P. Shoemaker, and D. A. Mills (2009) Relaxed control of sugar utilization in Lactobacillus brevis. Microbiology (Reading) 155: 1351–1359.

    Article  CAS  PubMed  Google Scholar 

  35. Choe, M., H. Min, Y.-H. Park, Y.-R. Kim, J.-S. Woo, and Y.-J. Seok (2019) Structural insight into glucose repression of the mannitol operon. Sci. Rep. 9: 13930.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Choe, M., Y.-H. Park, C.-R. Lee, Y.-R. Kim, and Y.-J. Seok (2017) The general PTS component HPr determines the preference for glucose over mannitol. Sci. Rep. 7: 43431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kanagachandran, K., P. F. Stanbury, S. J. Hall, and A. Ishizaki (1997) Glucose repression of xylose utilization by Lactococcus lactis IO-1. Biotechnol. Lett. 19: 923–925.

    Article  CAS  Google Scholar 

  38. Zhang, Y. and P. V. Vadlani (2015) Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. J. Biosci. Bioeng. 119: 694–699.

    Article  CAS  PubMed  Google Scholar 

  39. Cui, F., Y. Li, and C. Wan (2011) Lactic acid production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis. Bioresour. Technol. 102: 1831–1836.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2022R1F1A1074594).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chae Hun Ra.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.Y., Ra, C.H. Evaluation of Pretreatment and GABA Production Using Levilactobacillus brevis Fermentation of the Seaweed Saccharina japonica. Biotechnol Bioproc E 28, 568–576 (2023). https://doi.org/10.1007/s12257-023-0073-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-023-0073-9

Keywords

Navigation